This gene encodes a member of the type 3 G protein-coupled receptor family, characterized by the signature 7-transmembrane domain motif. The encoded protein may be involved in interaction between retinoic acid and G protein signalling pathways. Retinoic acid plays a critical role in development, cellular growth, and differentiation. This gene may play a role in embryonic development and epithelial cell differentiation.[2]
Post transcriptional regulation
GPRC5A is one of only a handful of genes known in the literature that are post-transcriptionally controlled by miRNAs through their 5'UTR.[3]
Clinical significance
GPRC5A is dysregulated in many human cancers and in other diseases.[4]
↑Cheng Y, Lotan R (1998). "Molecular cloning and characterization of a novel retinoic acid-inducible gene that encodes a putative G protein-coupled receptor". J. Biol. Chem. 273 (52): 35008–15. doi:10.1074/jbc.273.52.35008. PMID9857033.
Cafferata EG, Gonzalez-Guerrico AM, Pivetta OH, Santa-Coloma TA (1996). "Identification by differential display of a mRNA specifically induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in T84 human colon carcinoma cells". Cell. Mol. Biol. (Noisy-le-grand). 42 (5): 797–804. PMID8832110.
Bräuner-Osborne H, Krogsgaard-Larsen P (2000). "Sequence and expression pattern of a novel human orphan G-protein-coupled receptor, GPRC5B, a family C receptor with a short amino-terminal domain". Genomics. 65 (2): 121–8. doi:10.1006/geno.2000.6164. PMID10783259.
Robbins MJ, Michalovich D, Hill J, Calver AR, Medhurst AD, Gloger I, Sims M, Middlemiss DN, Pangalos MN (2000). "Molecular cloning and characterization of two novel retinoic acid-inducible orphan G-protein-coupled receptors (GPRC5B and GPRC5C)". Genomics. 67 (1): 8–18. doi:10.1006/geno.2000.6226. PMID10945465.
Tao Q, Cheng Y, Clifford J, Lotan R (2004). "Characterization of the murine orphan G-protein-coupled receptor gene Rai3 and its regulation by retinoic acid". Genomics. 83 (2): 270–80. doi:10.1016/S0888-7543(03)00237-4. PMID14706456.
Wu Q, Ding W, Mirza A, Van Arsdale T, Wei I, Bishop WR, Basso A, McClanahan T, Luo L, Kirschmeier P, Gustafson E, Hernandez M, Liu S (2005). "Integrative genomics revealed RAI3 is a cell growth-promoting gene and a novel P53 transcriptional target". J. Biol. Chem. 280 (13): 12935–43. doi:10.1074/jbc.M409901200. PMID15659406.
Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005). "Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules". Mol. Cell. Proteomics. 4 (9): 1240–50. doi:10.1074/mcp.M500089-MCP200. PMID15951569.
Hirano M, Zang L, Oka T, Ito Y, Shimada Y, Nishimura Y, Tanaka T (2006). "Novel reciprocal regulation of cAMP signaling and apoptosis by orphan G-protein-coupled receptor GPRC5A gene expression". Biochem. Biophys. Res. Commun. 351 (1): 185–91. doi:10.1016/j.bbrc.2006.10.016. PMID17055459.
External links
"GPRC5 Receptors: RAIG1". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.