Free fatty acid receptor 2: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
imported>Citation bot
m (Add: pages, issue, pmc. You can use this bot yourself. Report bugs here. | Headbomb)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Free fatty acid receptor 2''' ('''FFAR2''') is a [[G-protein coupled receptor]] encoded by the '''FFAR2''' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FFAR2 free fatty acid receptor 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2867| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Free fatty acid receptor 2
| HGNCid = 4501
| Symbol = FFAR2
| AltSymbols =; FFA2R; GPR43
| OMIM = 603823
| ECnumber = 
| Homologene = 74309
| MGIid = 2441731
| GeneAtlas_image1 = PBB_GE_FFAR2_221345_at_tn.png
| Function = {{GNF_GO|id=GO:0001584 |text = rhodopsin-like receptor activity}} {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0008289 |text = lipid binding}}
| Component = {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007186 |text = G-protein coupled receptor protein signaling pathway}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 2867
    | Hs_Ensembl = ENSG00000126262
    | Hs_RefseqProtein = NP_005297
    | Hs_RefseqmRNA = NM_005306
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 19
    | Hs_GenLoc_start = 40632457
    | Hs_GenLoc_end = 40633449
    | Hs_Uniprot = O15552
    | Mm_EntrezGene = 233079
    | Mm_Ensembl = ENSMUSG00000051314
    | Mm_RefseqmRNA = NM_146187
    | Mm_RefseqProtein = NP_666299
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 7
    | Mm_GenLoc_start = 30527117
    | Mm_GenLoc_end = 30532535
    | Mm_Uniprot = Q8VCK6
  }}
}}
'''Free fatty acid receptor 2''', also known as '''FFAR2''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FFAR2 free fatty acid receptor 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2867| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
Line 54: Line 8:
}}
}}


==See also==
==Expression==
FFAR2 mRNA is expressed in adipose tissue, pancreas, spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells.<ref name="pmid12684041">{{cite journal  | vauthors = Nilsson NE, Kotarsky K, Owman C, Olde B |title=Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. |journal=Biochem. Biophys. Res. Commun. |volume=303 |issue= 4 |pages= 1047–52 |year= 2003 |pmid= 12684041 |doi=10.1016/S0006-291X(03)00488-1  }}</ref><ref name="pmid12711604">{{cite journal  | vauthors=Le Poul E, Loison C, Struyf S |title=Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. |journal=J. Biol. Chem. |volume=278 |issue= 28 |pages= 25481–9 |year= 2003 |pmid= 12711604 |doi= 10.1074/jbc.M301403200 }}</ref> FFAR2 transcription is regulated by the XBP1 transcription factor which binds to the core promoter.<ref name="pmid25633224">{{cite journal | vauthors = Ang Z, Er JZ, Ding JL| title = The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes. | journal = Sci. Rep. | year = 2015 | pmid = 25633224 | doi=10.1038/srep08134 | volume=5 | pages=8134 | pmc=4311239}}</ref>
 
==  Function ==
Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.<ref>{{Cite journal|last=Bindels|first=Laure B.|last2=Dewulf|first2=Evelyne M.|last3=Delzenne|first3=Nathalie M.|date=2013-04-01|title=GPR43/FFA2: physiopathological relevance and therapeutic prospects|journal=Trends in Pharmacological Sciences|volume=34|issue=4|pages=226–232|doi=10.1016/j.tips.2013.02.002|issn=1873-3735|pmid=23489932}}</ref> [[Short Chain Fatty Acid]]s (SCFA's) generated in the processing of fiber by intestinal microbiota act as ligands for the receptor and can affect neutrophil chemotaxis.<ref>{{Cite journal|last=Yang|first=Guan|date=2018|title=Implication of G Protein-Coupled Receptor 43 in Intestinal Inflammation: A Mini-Review
|journal=Front. Immunol.|volume=9|pages=1434|doi=10.3389/fimmu.2018.01434|pmid=29988393|pmc=6023978}}</ref> <ref>{{Cite journal|last=D'Souza|first=WN|title=Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses.|journal=PLoS One|date=2017-07-20|volume=12|issue=7|pages=e0180190|doi=10.1371/journal.pone.0180190|pmid=28727837|pmc=5519041}}</ref> However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.<ref>{{Cite journal|last=Dewulf|first=Evelyne M.|last2=Ge|first2=Qian|last3=Bindels|first3=Laure B.|last4=Sohet|first4=Florence M.|last5=Cani|first5=Patrice D.|last6=Brichard|first6=Sonia M.|last7=Delzenne|first7=Nathalie M.|date=2013-01-17|title=Evaluation of the relationship between GPR43 and adiposity in human|journal=Nutrition & Metabolism|volume=10|issue=1|pages=11|doi=10.1186/1743-7075-10-11|pmc=3577645|pmid=23327542}}</ref><ref>{{Cite journal|last=Priyadarshini|first=Medha|last2=Villa|first2=Stephanie R.|last3=Fuller|first3=Miles|last4=Wicksteed|first4=Barton|last5=Mackay|first5=Charles R.|last6=Alquier|first6=Thierry|last7=Poitout|first7=Vincent|last8=Mancebo|first8=Helena|last9=Mirmira|first9=Raghavendra G.|date=2015-07-01|title=An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion|journal=Molecular Endocrinology |volume=29|issue=7|pages=1055–1066|doi=10.1210/me.2015-1007|issn=1944-9917|pmc=4484778|pmid=26075576}}</ref><ref>{{Cite journal|last=Ang|first=Zhiwei|last2=Er|first2=Jun Zhi|last3=Tan|first3=Nguan Soon|last4=Lu|first4=Jinhua|last5=Liou|first5=Yih-Cherng|last6=Grosse|first6=Johannes|last7=Ding|first7=Jeak Ling|date=2016-09-26|title=Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists|journal=Scientific Reports|volume=6|pages=34145|doi=10.1038/srep34145|issn=2045-2322|pmc=5036191|pmid=27667443}}</ref>
 
== Heteromerization ==
FFAR2 may interact with [[FFAR3]] to form a [[FFAR2-FFAR3 receptor heteromer]] with signalling that is distinct from the parent homomers.<ref>{{Cite journal| doi = 10.1096/fj.201700252RR| issn = 0892-6638| pages = –201700252RR| last1 = Ang| first1 = Zhiwei| last2 = Xiong| first2 = Ding| last3 = Wu| first3 = Min| last4 = Ding| first4 = Jeak Ling| title = FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing| journal = The FASEB Journal| accessdate = 2017-09-10| date = 2017-09-07| url = http://www.fasebj.org/content/early/2017/09/07/fj.201700252RR| pmid = 28883043| volume=32| issue = 1| pmc=5731126}}</ref>
 
== See also ==
* [[Free fatty acid receptor]]
* [[Free fatty acid receptor]]
*[[Short-chain_fatty_acid]]


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==External links==
*{{cite web | url = http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2979 | title = Free Fatty Acid Receptors: FFA2 | accessdate = | date = | format = | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | pages = | language = | archiveurl = | archivedate = | quote = }}


==Further reading==
==Further reading==
Line 64: Line 32:
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Brown AJ, Jupe S, Briscoe CP |title=A family of fatty acid binding receptors. |journal=DNA Cell Biol. |volume=24 |issue= 1 |pages= 54-61 |year= 2005 |pmid= 15684720 |doi= 10.1089/dna.2005.24.54 }}
*{{cite journal  | vauthors=Brown AJ, Jupe S, Briscoe CP |title=A family of fatty acid binding receptors. |journal=DNA Cell Biol. |volume=24 |issue= 1 |pages= 54–61 |year= 2005 |pmid= 15684720 |doi= 10.1089/dna.2005.24.54 }}
*{{cite journal  | author=Sawzdargo M, George SR, Nguyen T, ''et al.'' |title=A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. |journal=Biochem. Biophys. Res. Commun. |volume=239 |issue= 2 |pages= 543-7 |year= 1997 |pmid= 9344866 |doi= 10.1006/bbrc.1997.7513 }}
*{{cite journal  | vauthors=Sawzdargo M, George SR, Nguyen T |title=A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. |journal=Biochem. Biophys. Res. Commun. |volume=239 |issue= 2 |pages= 543–7 |year= 1997 |pmid= 9344866 |doi= 10.1006/bbrc.1997.7513 |display-authors=etal}}
*{{cite journal  | author=Senga T, Iwamoto S, Yoshida T, ''et al.'' |title=LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. |journal=Blood |volume=101 |issue= 3 |pages= 1185-7 |year= 2003 |pmid= 12393494 |doi= 10.1182/blood-2002-06-1881 }}
*{{cite journal  | vauthors=Senga T, Iwamoto S, Yoshida T |title=LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. |journal=Blood |volume=101 |issue= 3 |pages= 1185–7 |year= 2003 |pmid= 12393494 |doi= 10.1182/blood-2002-06-1881 |display-authors=etal}}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
*{{cite journal  | author=Brown AJ, Goldsworthy SM, Barnes AA, ''et al.'' |title=The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. |journal=J. Biol. Chem. |volume=278 |issue= 13 |pages= 11312-9 |year= 2003 |pmid= 12496283 |doi= 10.1074/jbc.M211609200 }}
*{{cite journal  | vauthors=Brown AJ, Goldsworthy SM, Barnes AA |title=The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. |journal=J. Biol. Chem. |volume=278 |issue= 13 |pages= 11312–9 |year= 2003 |pmid= 12496283 |doi= 10.1074/jbc.M211609200 |display-authors=etal}}
*{{cite journal  | author=Nilsson NE, Kotarsky K, Owman C, Olde B |title=Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. |journal=Biochem. Biophys. Res. Commun. |volume=303 |issue= 4 |pages= 1047-52 |year= 2003 |pmid= 12684041 |doi=  }}
*{{cite journal  | vauthors=Nilsson NE, Kotarsky K, Owman C, Olde B |title=Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. |journal=Biochem. Biophys. Res. Commun. |volume=303 |issue= 4 |pages= 1047–52 |year= 2003 |pmid= 12684041 |doi=10.1016/S0006-291X(03)00488-1 }}
*{{cite journal  | author=Le Poul E, Loison C, Struyf S, ''et al.'' |title=Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. |journal=J. Biol. Chem. |volume=278 |issue= 28 |pages= 25481-9 |year= 2003 |pmid= 12711604 |doi= 10.1074/jbc.M301403200 }}
*{{cite journal  | vauthors=Le Poul E, Loison C, Struyf S |title=Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. |journal=J. Biol. Chem. |volume=278 |issue= 28 |pages= 25481–9 |year= 2003 |pmid= 12711604 |doi= 10.1074/jbc.M301403200 |display-authors=etal}}
*{{cite journal  | author=Grimwood J, Gordon LA, Olsen A, ''et al.'' |title=The DNA sequence and biology of human chromosome 19. |journal=Nature |volume=428 |issue= 6982 |pages= 529-35 |year= 2004 |pmid= 15057824 |doi= 10.1038/nature02399 }}
*{{cite journal  | vauthors=Grimwood J, Gordon LA, Olsen A |title=The DNA sequence and biology of human chromosome 19. |journal=Nature |volume=428 |issue= 6982 |pages= 529–35 |year= 2004 |pmid= 15057824 |doi= 10.1038/nature02399 |display-authors=etal}}
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}}
*{{cite journal  | author=Yonezawa T, Kobayashi Y, Obara Y |title=Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF-7 human breast cancer cell line. |journal=Cell. Signal. |volume=19 |issue= 1 |pages= 185-93 |year= 2007 |pmid= 16887331 |doi= 10.1016/j.cellsig.2006.06.004 }}
*{{cite journal  | vauthors=Yonezawa T, Kobayashi Y, Obara Y |title=Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF-7 human breast cancer cell line. |journal=Cell. Signal. |volume=19 |issue= 1 |pages= 185–93 |year= 2007 |pmid= 16887331 |doi= 10.1016/j.cellsig.2006.06.004 }}
}}
}}
{{refend}}
{{refend}}


{{membrane-protein-stub}}
{{G protein-coupled receptors}}
{{G protein-coupled receptors}}
[[Category:G protein coupled receptors]]
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
[[Category:G protein-coupled receptors]]
{{transmembranereceptor-stub}}

Latest revision as of 17:31, 3 November 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Free fatty acid receptor 2 (FFAR2) is a G-protein coupled receptor encoded by the FFAR2 gene.[1]


Expression

FFAR2 mRNA is expressed in adipose tissue, pancreas, spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells.[2][3] FFAR2 transcription is regulated by the XBP1 transcription factor which binds to the core promoter.[4]

Function

Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.[5] Short Chain Fatty Acids (SCFA's) generated in the processing of fiber by intestinal microbiota act as ligands for the receptor and can affect neutrophil chemotaxis.[6] [7] However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.[8][9][10]

Heteromerization

FFAR2 may interact with FFAR3 to form a FFAR2-FFAR3 receptor heteromer with signalling that is distinct from the parent homomers.[11]

See also

References

  1. "Entrez Gene: FFAR2 free fatty acid receptor 2".
  2. Nilsson NE, Kotarsky K, Owman C, Olde B (2003). "Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids". Biochem. Biophys. Res. Commun. 303 (4): 1047–52. doi:10.1016/S0006-291X(03)00488-1. PMID 12684041.
  3. Le Poul E, Loison C, Struyf S (2003). "Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation". J. Biol. Chem. 278 (28): 25481–9. doi:10.1074/jbc.M301403200. PMID 12711604.
  4. Ang Z, Er JZ, Ding JL (2015). "The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes". Sci. Rep. 5: 8134. doi:10.1038/srep08134. PMC 4311239. PMID 25633224.
  5. Bindels, Laure B.; Dewulf, Evelyne M.; Delzenne, Nathalie M. (2013-04-01). "GPR43/FFA2: physiopathological relevance and therapeutic prospects". Trends in Pharmacological Sciences. 34 (4): 226–232. doi:10.1016/j.tips.2013.02.002. ISSN 1873-3735. PMID 23489932.
  6. Yang, Guan (2018). "Implication of G Protein-Coupled Receptor 43 in Intestinal Inflammation: A Mini-Review". Front. Immunol. 9: 1434. doi:10.3389/fimmu.2018.01434. PMC 6023978. PMID 29988393.
  7. D'Souza, WN (2017-07-20). "Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses". PLoS One. 12 (7): e0180190. doi:10.1371/journal.pone.0180190. PMC 5519041. PMID 28727837.
  8. Dewulf, Evelyne M.; Ge, Qian; Bindels, Laure B.; Sohet, Florence M.; Cani, Patrice D.; Brichard, Sonia M.; Delzenne, Nathalie M. (2013-01-17). "Evaluation of the relationship between GPR43 and adiposity in human". Nutrition & Metabolism. 10 (1): 11. doi:10.1186/1743-7075-10-11. PMC 3577645. PMID 23327542.
  9. Priyadarshini, Medha; Villa, Stephanie R.; Fuller, Miles; Wicksteed, Barton; Mackay, Charles R.; Alquier, Thierry; Poitout, Vincent; Mancebo, Helena; Mirmira, Raghavendra G. (2015-07-01). "An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion". Molecular Endocrinology. 29 (7): 1055–1066. doi:10.1210/me.2015-1007. ISSN 1944-9917. PMC 4484778. PMID 26075576.
  10. Ang, Zhiwei; Er, Jun Zhi; Tan, Nguan Soon; Lu, Jinhua; Liou, Yih-Cherng; Grosse, Johannes; Ding, Jeak Ling (2016-09-26). "Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists". Scientific Reports. 6: 34145. doi:10.1038/srep34145. ISSN 2045-2322. PMC 5036191. PMID 27667443.
  11. Ang, Zhiwei; Xiong, Ding; Wu, Min; Ding, Jeak Ling (2017-09-07). "FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing". The FASEB Journal. 32 (1): –201700252RR. doi:10.1096/fj.201700252RR. ISSN 0892-6638. PMC 5731126. PMID 28883043. Retrieved 2017-09-10.

External links

Further reading