Free fatty acid receptor 2: Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
imported>Citation bot m (Add: pages, issue, pmc. You can use this bot yourself. Report bugs here. | Headbomb) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
'''Free fatty acid receptor 2''' ('''FFAR2''') is a [[G-protein coupled receptor]] encoded by the '''FFAR2''' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FFAR2 free fatty acid receptor 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2867| accessdate = }}</ref> | |||
}} | |||
'''Free fatty acid receptor 2''' | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
Line 54: | Line 8: | ||
}} | }} | ||
==See also== | ==Expression== | ||
FFAR2 mRNA is expressed in adipose tissue, pancreas, spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells.<ref name="pmid12684041">{{cite journal | vauthors = Nilsson NE, Kotarsky K, Owman C, Olde B |title=Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. |journal=Biochem. Biophys. Res. Commun. |volume=303 |issue= 4 |pages= 1047–52 |year= 2003 |pmid= 12684041 |doi=10.1016/S0006-291X(03)00488-1 }}</ref><ref name="pmid12711604">{{cite journal | vauthors=Le Poul E, Loison C, Struyf S |title=Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. |journal=J. Biol. Chem. |volume=278 |issue= 28 |pages= 25481–9 |year= 2003 |pmid= 12711604 |doi= 10.1074/jbc.M301403200 }}</ref> FFAR2 transcription is regulated by the XBP1 transcription factor which binds to the core promoter.<ref name="pmid25633224">{{cite journal | vauthors = Ang Z, Er JZ, Ding JL| title = The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes. | journal = Sci. Rep. | year = 2015 | pmid = 25633224 | doi=10.1038/srep08134 | volume=5 | pages=8134 | pmc=4311239}}</ref> | |||
== Function == | |||
Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.<ref>{{Cite journal|last=Bindels|first=Laure B.|last2=Dewulf|first2=Evelyne M.|last3=Delzenne|first3=Nathalie M.|date=2013-04-01|title=GPR43/FFA2: physiopathological relevance and therapeutic prospects|journal=Trends in Pharmacological Sciences|volume=34|issue=4|pages=226–232|doi=10.1016/j.tips.2013.02.002|issn=1873-3735|pmid=23489932}}</ref> [[Short Chain Fatty Acid]]s (SCFA's) generated in the processing of fiber by intestinal microbiota act as ligands for the receptor and can affect neutrophil chemotaxis.<ref>{{Cite journal|last=Yang|first=Guan|date=2018|title=Implication of G Protein-Coupled Receptor 43 in Intestinal Inflammation: A Mini-Review | |||
|journal=Front. Immunol.|volume=9|pages=1434|doi=10.3389/fimmu.2018.01434|pmid=29988393|pmc=6023978}}</ref> <ref>{{Cite journal|last=D'Souza|first=WN|title=Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses.|journal=PLoS One|date=2017-07-20|volume=12|issue=7|pages=e0180190|doi=10.1371/journal.pone.0180190|pmid=28727837|pmc=5519041}}</ref> However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.<ref>{{Cite journal|last=Dewulf|first=Evelyne M.|last2=Ge|first2=Qian|last3=Bindels|first3=Laure B.|last4=Sohet|first4=Florence M.|last5=Cani|first5=Patrice D.|last6=Brichard|first6=Sonia M.|last7=Delzenne|first7=Nathalie M.|date=2013-01-17|title=Evaluation of the relationship between GPR43 and adiposity in human|journal=Nutrition & Metabolism|volume=10|issue=1|pages=11|doi=10.1186/1743-7075-10-11|pmc=3577645|pmid=23327542}}</ref><ref>{{Cite journal|last=Priyadarshini|first=Medha|last2=Villa|first2=Stephanie R.|last3=Fuller|first3=Miles|last4=Wicksteed|first4=Barton|last5=Mackay|first5=Charles R.|last6=Alquier|first6=Thierry|last7=Poitout|first7=Vincent|last8=Mancebo|first8=Helena|last9=Mirmira|first9=Raghavendra G.|date=2015-07-01|title=An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion|journal=Molecular Endocrinology |volume=29|issue=7|pages=1055–1066|doi=10.1210/me.2015-1007|issn=1944-9917|pmc=4484778|pmid=26075576}}</ref><ref>{{Cite journal|last=Ang|first=Zhiwei|last2=Er|first2=Jun Zhi|last3=Tan|first3=Nguan Soon|last4=Lu|first4=Jinhua|last5=Liou|first5=Yih-Cherng|last6=Grosse|first6=Johannes|last7=Ding|first7=Jeak Ling|date=2016-09-26|title=Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists|journal=Scientific Reports|volume=6|pages=34145|doi=10.1038/srep34145|issn=2045-2322|pmc=5036191|pmid=27667443}}</ref> | |||
== Heteromerization == | |||
FFAR2 may interact with [[FFAR3]] to form a [[FFAR2-FFAR3 receptor heteromer]] with signalling that is distinct from the parent homomers.<ref>{{Cite journal| doi = 10.1096/fj.201700252RR| issn = 0892-6638| pages = –201700252RR| last1 = Ang| first1 = Zhiwei| last2 = Xiong| first2 = Ding| last3 = Wu| first3 = Min| last4 = Ding| first4 = Jeak Ling| title = FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing| journal = The FASEB Journal| accessdate = 2017-09-10| date = 2017-09-07| url = http://www.fasebj.org/content/early/2017/09/07/fj.201700252RR| pmid = 28883043| volume=32| issue = 1| pmc=5731126}}</ref> | |||
== See also == | |||
* [[Free fatty acid receptor]] | * [[Free fatty acid receptor]] | ||
*[[Short-chain_fatty_acid]] | |||
==References== | ==References== | ||
{{reflist| | {{reflist}} | ||
==External links== | |||
*{{cite web | url = http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2979 | title = Free Fatty Acid Receptors: FFA2 | accessdate = | date = | format = | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | pages = | language = | archiveurl = | archivedate = | quote = }} | |||
==Further reading== | ==Further reading== | ||
Line 64: | Line 32: | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal | vauthors=Brown AJ, Jupe S, Briscoe CP |title=A family of fatty acid binding receptors. |journal=DNA Cell Biol. |volume=24 |issue= 1 |pages= 54–61 |year= 2005 |pmid= 15684720 |doi= 10.1089/dna.2005.24.54 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Sawzdargo M, George SR, Nguyen T |title=A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. |journal=Biochem. Biophys. Res. Commun. |volume=239 |issue= 2 |pages= 543–7 |year= 1997 |pmid= 9344866 |doi= 10.1006/bbrc.1997.7513 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Senga T, Iwamoto S, Yoshida T |title=LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. |journal=Blood |volume=101 |issue= 3 |pages= 1185–7 |year= 2003 |pmid= 12393494 |doi= 10.1182/blood-2002-06-1881 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Brown AJ, Goldsworthy SM, Barnes AA |title=The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. |journal=J. Biol. Chem. |volume=278 |issue= 13 |pages= 11312–9 |year= 2003 |pmid= 12496283 |doi= 10.1074/jbc.M211609200 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Nilsson NE, Kotarsky K, Owman C, Olde B |title=Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. |journal=Biochem. Biophys. Res. Commun. |volume=303 |issue= 4 |pages= 1047–52 |year= 2003 |pmid= 12684041 |doi=10.1016/S0006-291X(03)00488-1 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Le Poul E, Loison C, Struyf S |title=Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. |journal=J. Biol. Chem. |volume=278 |issue= 28 |pages= 25481–9 |year= 2003 |pmid= 12711604 |doi= 10.1074/jbc.M301403200 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Grimwood J, Gordon LA, Olsen A |title=The DNA sequence and biology of human chromosome 19. |journal=Nature |volume=428 |issue= 6982 |pages= 529–35 |year= 2004 |pmid= 15057824 |doi= 10.1038/nature02399 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Yonezawa T, Kobayashi Y, Obara Y |title=Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF-7 human breast cancer cell line. |journal=Cell. Signal. |volume=19 |issue= 1 |pages= 185–93 |year= 2007 |pmid= 16887331 |doi= 10.1016/j.cellsig.2006.06.004 }} | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{G protein-coupled receptors}} | {{G protein-coupled receptors}} | ||
[[Category:G protein coupled receptors]] | <!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | ||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
[[Category:G protein-coupled receptors]] | |||
{{transmembranereceptor-stub}} |
Latest revision as of 17:31, 3 November 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Free fatty acid receptor 2 (FFAR2) is a G-protein coupled receptor encoded by the FFAR2 gene.[1]
Expression
FFAR2 mRNA is expressed in adipose tissue, pancreas, spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells.[2][3] FFAR2 transcription is regulated by the XBP1 transcription factor which binds to the core promoter.[4]
Function
Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.[5] Short Chain Fatty Acids (SCFA's) generated in the processing of fiber by intestinal microbiota act as ligands for the receptor and can affect neutrophil chemotaxis.[6] [7] However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.[8][9][10]
Heteromerization
FFAR2 may interact with FFAR3 to form a FFAR2-FFAR3 receptor heteromer with signalling that is distinct from the parent homomers.[11]
See also
References
- ↑ "Entrez Gene: FFAR2 free fatty acid receptor 2".
- ↑ Nilsson NE, Kotarsky K, Owman C, Olde B (2003). "Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids". Biochem. Biophys. Res. Commun. 303 (4): 1047–52. doi:10.1016/S0006-291X(03)00488-1. PMID 12684041.
- ↑ Le Poul E, Loison C, Struyf S (2003). "Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation". J. Biol. Chem. 278 (28): 25481–9. doi:10.1074/jbc.M301403200. PMID 12711604.
- ↑ Ang Z, Er JZ, Ding JL (2015). "The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes". Sci. Rep. 5: 8134. doi:10.1038/srep08134. PMC 4311239. PMID 25633224.
- ↑ Bindels, Laure B.; Dewulf, Evelyne M.; Delzenne, Nathalie M. (2013-04-01). "GPR43/FFA2: physiopathological relevance and therapeutic prospects". Trends in Pharmacological Sciences. 34 (4): 226–232. doi:10.1016/j.tips.2013.02.002. ISSN 1873-3735. PMID 23489932.
- ↑ Yang, Guan (2018). "Implication of G Protein-Coupled Receptor 43 in Intestinal Inflammation: A Mini-Review". Front. Immunol. 9: 1434. doi:10.3389/fimmu.2018.01434. PMC 6023978. PMID 29988393.
- ↑ D'Souza, WN (2017-07-20). "Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses". PLoS One. 12 (7): e0180190. doi:10.1371/journal.pone.0180190. PMC 5519041. PMID 28727837.
- ↑ Dewulf, Evelyne M.; Ge, Qian; Bindels, Laure B.; Sohet, Florence M.; Cani, Patrice D.; Brichard, Sonia M.; Delzenne, Nathalie M. (2013-01-17). "Evaluation of the relationship between GPR43 and adiposity in human". Nutrition & Metabolism. 10 (1): 11. doi:10.1186/1743-7075-10-11. PMC 3577645. PMID 23327542.
- ↑ Priyadarshini, Medha; Villa, Stephanie R.; Fuller, Miles; Wicksteed, Barton; Mackay, Charles R.; Alquier, Thierry; Poitout, Vincent; Mancebo, Helena; Mirmira, Raghavendra G. (2015-07-01). "An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion". Molecular Endocrinology. 29 (7): 1055–1066. doi:10.1210/me.2015-1007. ISSN 1944-9917. PMC 4484778. PMID 26075576.
- ↑ Ang, Zhiwei; Er, Jun Zhi; Tan, Nguan Soon; Lu, Jinhua; Liou, Yih-Cherng; Grosse, Johannes; Ding, Jeak Ling (2016-09-26). "Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists". Scientific Reports. 6: 34145. doi:10.1038/srep34145. ISSN 2045-2322. PMC 5036191. PMID 27667443.
- ↑ Ang, Zhiwei; Xiong, Ding; Wu, Min; Ding, Jeak Ling (2017-09-07). "FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing". The FASEB Journal. 32 (1): –201700252RR. doi:10.1096/fj.201700252RR. ISSN 0892-6638. PMC 5731126. PMID 28883043. Retrieved 2017-09-10.
External links
- "Free Fatty Acid Receptors: FFA2". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.
Further reading
- Brown AJ, Jupe S, Briscoe CP (2005). "A family of fatty acid binding receptors". DNA Cell Biol. 24 (1): 54–61. doi:10.1089/dna.2005.24.54. PMID 15684720.
- Sawzdargo M, George SR, Nguyen T, et al. (1997). "A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1". Biochem. Biophys. Res. Commun. 239 (2): 543–7. doi:10.1006/bbrc.1997.7513. PMID 9344866.
- Senga T, Iwamoto S, Yoshida T, et al. (2003). "LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3". Blood. 101 (3): 1185–7. doi:10.1182/blood-2002-06-1881. PMID 12393494.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Brown AJ, Goldsworthy SM, Barnes AA, et al. (2003). "The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids". J. Biol. Chem. 278 (13): 11312–9. doi:10.1074/jbc.M211609200. PMID 12496283.
- Nilsson NE, Kotarsky K, Owman C, Olde B (2003). "Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids". Biochem. Biophys. Res. Commun. 303 (4): 1047–52. doi:10.1016/S0006-291X(03)00488-1. PMID 12684041.
- Le Poul E, Loison C, Struyf S, et al. (2003). "Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation". J. Biol. Chem. 278 (28): 25481–9. doi:10.1074/jbc.M301403200. PMID 12711604.
- Grimwood J, Gordon LA, Olsen A, et al. (2004). "The DNA sequence and biology of human chromosome 19". Nature. 428 (6982): 529–35. doi:10.1038/nature02399. PMID 15057824.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Yonezawa T, Kobayashi Y, Obara Y (2007). "Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF-7 human breast cancer cell line". Cell. Signal. 19 (1): 185–93. doi:10.1016/j.cellsig.2006.06.004. PMID 16887331.
This transmembrane receptor-related article is a stub. You can help Wikipedia by expanding it. |