Beta-1 adrenergic receptor: Difference between revisions
Gerald Chi (talk | contribs) mNo edit summary |
imported>Jamgoodman m (formatting error) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | The '''beta-1 adrenergic receptor''' (β<sub>1</sub> adrenoceptor), also known as '''ADRB1''', is a [[beta-adrenergic receptor]], and also denotes the human [[gene]] encoding it.<ref name="entrez" /> It is a [[G-protein coupled receptor]] associated with the [[Gs alpha subunit|Gs]] [[heterotrimeric G-protein]] and is expressed predominantly in cardiac tissue. | ||
}} | |||
== | ==Receptor== | ||
===Actions=== | ===Actions=== | ||
Actions of the β<sub>1</sub> receptor include: | Actions of the β<sub>1</sub> receptor include: | ||
{|class="wikitable" | |||
!colspan=3| Effect/Tissue | |||
|- | |||
|rowspan=6|Muscular | |||
|Increase [[cardiac output]] | |||
|[[cardiac muscle]] | |||
|- | |||
|Increase [[heart rate]] ([[chronotropic]] effect) | |||
|[[sinoatrial node]] (SA node) <ref name="purves">{{cite book |author1=Fitzpatrick, David |author2=Purves, Dale |author3=Augustine, George | title = Neuroscience | publisher = Sinauer | location = Sunderland, Mass | year = 2004 | edition = Third | chapter = Table 20:2 | pages = | isbn = 0-87893-725-0 | oclc = | doi = }}</ref> | |||
|- | |||
|Increase [[heart atrium|atrial]] contractility ([[inotropic]] effect) | |||
|[[cardiac muscle]] | |||
|- | |||
|Increases contractility and [[cardiac muscle automaticity|automaticity]] | |||
|[[heart ventricle|ventricular]] cardiac muscle <ref name=purves/> | |||
|- | |||
|Increases conduction and [[cardiac muscle automaticity|automaticity]] | |||
|[[atrioventricular node]] (AV node)<ref name=purves/> | |||
|- | |||
|Relaxation | |||
|urinary bladder wall<ref name="Moro et al. 2013">{{cite journal | vauthors = Moro C, Tajouri L, Chess-Williams R | title = Adrenoceptor function and expression in bladder urothelium and lamina propria | journal = Urology | volume = 81 | issue = 1 | pages = 211.e1–7 | date = January 2013 | pmid = 23200975 | doi = 10.1016/j.urology.2012.09.011 }}</ref> | |||
|- | |||
|rowspan=2|Exocrine | |||
|[[Renin]] release | |||
|[[juxtaglomerular cells]].<ref name=purves/> | |||
|- | |||
|stimulate viscous, [[amylase]]-filled secretions | |||
| | |||
[[salivary gland]]s<ref name=Rang163>{{cite book |author=Rang, H. P. |title=Pharmacology |publisher=Churchill Livingstone |location=Edinburgh |year=2003 |pages= |isbn=0-443-07145-4 |oclc= |doi=}} Page 163</ref> | |||
|- | |||
|Other | |||
|[[Lipolysis]] | |||
|[[adipose tissue]].<ref name=purves/> | |||
|} | |||
The receptor is also present in the [[cerebral cortex]]. | |||
===Agonists=== | ===Agonists=== | ||
[[ | [[Isoprenaline]] has higher affinity for β<sub>1</sub> than [[adrenaline]], which, in turn, binds with higher affinity than [[noradrenaline]] at physiologic concentrations. | ||
[[Selective agonist]]s to the beta-1 receptor are: | [[Selective agonist]]s to the beta-1 receptor are: | ||
*[[ | *[[Denopamine]] | ||
*[[ | *[[Dobutamine]]<ref name=Rang163/> (in [[cardiogenic shock]]) | ||
*[[Xamoterol]]<ref name="Rang163"/> ([[cardiac stimulant]]) | |||
===Antagonists=== | ===Antagonists=== | ||
''([[Beta blocker]]s)'' | ''([[Beta blocker]]s)'' | ||
β1-selective | β1-selective antagonists include: | ||
*[[Acebutolol]] (in [[hypertension]], [[angina pectoris]] and [[arrhythmia]]s) | *[[Acebutolol]] (in [[hypertension]], [[angina pectoris]] and [[Heart arrhythmia|arrhythmia]]s) | ||
*[[Atenolol]]<ref name=Rang163/> (in [[hypertension]], [[coronary heart disease]], [[arrhythmia]]s and [[myocardial infarction]]) | *[[Atenolol]]<ref name=Rang163/> (in [[hypertension]], [[coronary heart disease]], [[Heart arrhythmia|arrhythmia]]s and [[myocardial infarction]]) | ||
*[[Betaxolol]] (in [[hypertension]] and [[glaucoma]]) | *[[Betaxolol]] (in [[hypertension]] and [[glaucoma]]) | ||
*[[Bisoprolol]]<ref name="bisoprolol"> | *[[Bisoprolol]]<ref name="bisoprolol">{{cite web|url=https://www.nlm.nih.gov/medlineplus/druginfo/medmaster/a693024.html |title=Bisoprolol |author=American Society of Health-System Pharmacists, Inc. |date=2005-01-01 |work=MedlinePlus Drug Information |publisher=U.S. National Library of Medicine, National Institutes of Health |pages= |archiveurl=https://web.archive.org/web/20080520211346/http://www.nlm.nih.gov/medlineplus/druginfo/medmaster/a693024.html |archivedate=2008-05-20 |quote= |accessdate=2008-06-06 |deadurl=yes |df= }}</ref> (in [[hypertension]], [[coronary heart disease]], [[Heart arrhythmia|arrhythmia]]s, [[myocardial infarction]] and [[ischemic heart disease]]s) | ||
*[[Esmolol]] (in [[arrhythmia]]s) | *[[Esmolol]] (in [[Heart arrhythmia|arrhythmia]]s) | ||
*[[Metoprolol]]<ref name=Rang163/> (in [[hypertension]], [[coronary heart disease]], [[myocardial infarction]] and [[heart failure]]) | *[[Metoprolol]]<ref name=Rang163/> (in [[hypertension]], [[coronary heart disease]], [[myocardial infarction]] and [[heart failure]]) | ||
*[[Nebivolol]] (in [[hypertension]]) | *[[Nebivolol]] (in [[hypertension]]) | ||
*[[Vortioxetine]] ([[antidepressant]]) | |||
===Mechanism=== | ===Mechanism in cardiac myocytes=== | ||
[[Gs alpha subunit|G<sub>s</sub>]] renders [[adenylate cyclase]] activated, resulting in increase of [[Cyclic adenosine monophosphate|cAMP]]. | [[Gs alpha subunit|G<sub>s</sub>]] exerts its effects via two pathways. Firstly, it directly opens [[L-type calcium channel]]s (LTCC) in the plasma membrane. Secondly, it renders [[adenylate cyclase]] activated, resulting in an increase of [[Cyclic adenosine monophosphate|cAMP]], activating [[protein kinase A]] (PKA) which in turn phosphorylates several targets, such as [[phospholamban]], LTCC, [[Troponin I]] (TnI), and [[potassium channel]]s. Phospholamban phosphorylates deactivates its function which is normally inhibition of SERCA on the [[sarcoplasmic reticulum]] (SR) in cardiac myocytes. Due to this, more calcium enters the SR and is therefore available for the next contraction. LTCC phosphorylatation increases its open probability and therefore allows more calcium to enter the myocyte upon cell depolarisation. Both of these mechanisms increase the available calcium for contraction and therefore increase [[Inotrope|inotropy]]. Conversely, TnI phosphorylation results in its facilitated dissociation of calcium from [[troponin C]] (TnC) which fastens the muscle relaxation (positive [[lusitropy]]). Potassium channel phosphorylates increases its open probability which results in shorter [[Refractory period (physiology)|refractory period]] (because the cell repolarises faster), also increasing [[Chronotropic|lusitropy]]. Furthermore, in nodal cells such as in the SA node, cAMP directly binds to and opens the [[HCN channel]]s, increasing their open probability, which increases [[Chronotropic|chronotropy]].<ref>{{Cite book|url=https://www.worldcat.org/oclc/756281854|title=Medical physiology : a cellular and molecular approach|others=Boron, Walter F.,, Boulpaep, Emile L.,|isbn=9781437717532|edition= Updated second |location=Philadelphia, PA|oclc=756281854}}</ref> | ||
==Gene== | ==Gene== | ||
Specific polymorphisms in | Specific polymorphisms in the ADRB1 gene have been shown to affect the resting [[heart rate]] and can be involved in [[heart failure]].<ref name="entrez">{{cite web | title = Entrez Gene: ADRB1 adrenergic, beta-1-, receptor| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=153| accessdate = }}</ref> | ||
==See also== | == Interactions == | ||
Beta-1 adrenergic receptor has been shown to [[Protein-protein interaction|interact]] with [[DLG4]]<ref name="pmid10995758">{{cite journal | vauthors = Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA | title = beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors | journal = The Journal of Biological Chemistry | volume = 275 | issue = 49 | pages = 38659–66 | date = Dec 2000 | pmid = 10995758 | doi = 10.1074/jbc.M005938200 }}</ref> and [[GIPC1]].<ref name="pmid12724327">{{cite journal | vauthors = Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT, Lefkowitz RJ | title = GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation | journal = The Journal of Biological Chemistry | volume = 278 | issue = 28 | pages = 26295–301 | date = Jul 2003 | pmid = 12724327 | doi = 10.1074/jbc.M212352200 }}</ref> Interaction between testosterone and β-1 ARs have been shown in anxiolytic behaviors in the basolateral amygdala.<ref>{{cite journal | vauthors = Mard-Soltani M, Kesmati M, Khajehpour L, Rasekh A, Shamshirgar-Zadeh A | title = Interaction between Anxiolytic Effects of Testosterone and β-1 Adrenoceptors of Basolateral Amygdala | journal = International Journal of Pharmacology | date = April 2012 | doi = 10.3923/ijp.2012.344.354 | volume = 8 | issue = 5 | pages = 344–354 }}</ref> | |||
== See also == | |||
*Other [[adrenergic receptors]] | *Other [[adrenergic receptors]] | ||
**[[Alpha-1 adrenergic receptor]] | **[[Alpha-1 adrenergic receptor]] | ||
**[[Alpha-2 adrenergic receptor]] | **[[Alpha-2 adrenergic receptor]] | ||
**[[Beta-2 adrenergic receptor]] | **[[Beta-2 adrenergic receptor]] | ||
**[[Beta-3 adrenergic receptor]] | **[[Beta-3 adrenergic receptor]] | ||
==References== | == References == | ||
{{reflist | {{reflist}} | ||
==Further reading== | |||
== Further reading == | |||
{{refbegin | 2}} | {{refbegin | 2}} | ||
* {{cite journal | vauthors = Frielle T, Kobilka B, Lefkowitz RJ, Caron MG | title = Human beta 1- and beta 2-adrenergic receptors: structurally and functionally related receptors derived from distinct genes | journal = Trends in Neurosciences | volume = 11 | issue = 7 | pages = 321–4 | date = Jul 1988 | pmid = 2465637 | doi = 10.1016/0166-2236(88)90095-1 }} | |||
* {{cite journal | vauthors = Muszkat M | title = Interethnic differences in drug response: the contribution of genetic variability in beta adrenergic receptor and cytochrome P4502C9 | journal = Clinical Pharmacology and Therapeutics | volume = 82 | issue = 2 | pages = 215–8 | date = Aug 2007 | pmid = 17329986 | doi = 10.1038/sj.clpt.6100142 }} | |||
*{{cite journal | * {{cite journal | vauthors = Yang-Feng TL, Xue FY, Zhong WW, Cotecchia S, Frielle T, Caron MG, Lefkowitz RJ, Francke U | title = Chromosomal organization of adrenergic receptor genes | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 87 | issue = 4 | pages = 1516–20 | date = Feb 1990 | pmid = 2154750 | pmc = 53506 | doi = 10.1073/pnas.87.4.1516 }} | ||
*{{cite journal | * {{cite journal | vauthors = Forse RA, Leibel R, Gagner M | title = The effect of Escherichia coli endotoxin on the adrenergic control of lipolysis in the human adipocyte | journal = The Journal of Surgical Research | volume = 46 | issue = 1 | pages = 41–8 | date = Jan 1989 | pmid = 2536864 | doi = 10.1016/0022-4804(89)90180-7 }} | ||
*{{cite journal | * {{cite journal | vauthors = Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK | title = Cloning of the cDNA for the human beta 1-adrenergic receptor | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 84 | issue = 22 | pages = 7920–4 | date = Nov 1987 | pmid = 2825170 | pmc = 299447 | doi = 10.1073/pnas.84.22.7920 }} | ||
*{{cite journal | * {{cite journal | vauthors = Stiles GL, Strasser RH, Lavin TN, Jones LR, Caron MG, Lefkowitz RJ | title = The cardiac beta-adrenergic receptor. Structural similarities of beta 1 and beta 2 receptor subtypes demonstrated by photoaffinity labeling | journal = The Journal of Biological Chemistry | volume = 258 | issue = 13 | pages = 8443–9 | date = Jul 1983 | pmid = 6305985 | doi = }} | ||
*{{cite journal | * {{cite journal | vauthors = Hoehe MR, Otterud B, Hsieh WT, Martinez MM, Stauffer D, Holik J, Berrettini WH, Byerley WF, Gershon ES, Lalouel JM | title = Genetic mapping of adrenergic receptor genes in humans | journal = Journal of Molecular Medicine | volume = 73 | issue = 6 | pages = 299–306 | date = Jun 1995 | pmid = 7583452 | doi = 10.1007/BF00231616 }} | ||
*{{cite journal | * {{cite journal | vauthors = Elies R, Ferrari I, Wallukat G, Lebesgue D, Chiale P, Elizari M, Rosenbaum M, Hoebeke J, Levin MJ | title = Structural and functional analysis of the B cell epitopes recognized by anti-receptor autoantibodies in patients with Chagas' disease | journal = Journal of Immunology | volume = 157 | issue = 9 | pages = 4203–11 | date = Nov 1996 | pmid = 8892658 | doi = }} | ||
*{{cite journal | * {{cite journal | vauthors = Oldenhof J, Vickery R, Anafi M, Oak J, Ray A, Schoots O, Pawson T, von Zastrow M, Van Tol HH | title = SH3 binding domains in the dopamine D4 receptor | journal = Biochemistry | volume = 37 | issue = 45 | pages = 15726–36 | date = Nov 1998 | pmid = 9843378 | doi = 10.1021/bi981634+}} | ||
*{{cite journal | * {{cite journal | vauthors = Mason DA, Moore JD, Green SA, Liggett SB | title = A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor | journal = The Journal of Biological Chemistry | volume = 274 | issue = 18 | pages = 12670–4 | date = Apr 1999 | pmid = 10212248 | doi = 10.1074/jbc.274.18.12670 }} | ||
*{{cite journal | * {{cite journal | vauthors = Moore JD, Mason DA, Green SA, Hsu J, Liggett SB | title = Racial differences in the frequencies of cardiac beta(1)-adrenergic receptor polymorphisms: analysis of c145A>G and c1165G>C | journal = Human Mutation | volume = 14 | issue = 3 | pages = 271 | date = Sep 1999 | pmid = 10477438 | doi = 10.1002/(SICI)1098-1004(1999)14:3<271::AID-HUMU14>3.0.CO;2-Q }} | ||
*{{cite journal | * {{cite journal | vauthors = Tang Y, Hu LA, Miller WE, Ringstad N, Hall RA, Pitcher JA, DeCamilli P, Lefkowitz RJ | title = Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 96 | issue = 22 | pages = 12559–64 | date = Oct 1999 | pmid = 10535961 | pmc = 22990 | doi = 10.1073/pnas.96.22.12559 }} | ||
*{{cite journal | * {{cite journal | vauthors = Podlowski S, Wenzel K, Luther HP, Müller J, Bramlage P, Baumann G, Felix SB, Speer A, Hetzer R, Köpke K, Hoehe MR, Wallukat G | title = Beta1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? | journal = Journal of Molecular Medicine | volume = 78 | issue = 2 | pages = 87–93 | year = 2000 | pmid = 10794544 | doi = 10.1007/s001090000080 }} | ||
*{{cite journal | * {{cite journal | vauthors = Shiina T, Kawasaki A, Nagao T, Kurose H | title = Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors | journal = The Journal of Biological Chemistry | volume = 275 | issue = 37 | pages = 29082–90 | date = Sep 2000 | pmid = 10862778 | doi = 10.1074/jbc.M909757199 }} | ||
* {{cite journal | vauthors = Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA | title = beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors | journal = The Journal of Biological Chemistry | volume = 275 | issue = 49 | pages = 38659–66 | date = Dec 2000 | pmid = 10995758 | doi = 10.1074/jbc.M005938200 }} | |||
*{{cite journal | * {{cite journal | vauthors = Börjesson M, Magnusson Y, Hjalmarson A, Andersson B | title = A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure | journal = European Heart Journal | volume = 21 | issue = 22 | pages = 1853–8 | date = Nov 2000 | pmid = 11052857 | doi = 10.1053/euhj.1999.1994 }} | ||
*{{cite journal | * {{cite journal | vauthors = Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA | title = beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95 | journal = The Journal of Biological Chemistry | volume = 276 | issue = 44 | pages = 41310–7 | date = Nov 2001 | pmid = 11526121 | doi = 10.1074/jbc.M107480200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Hu LA, Chen W, Premont RT, Cong M, Lefkowitz RJ | title = G protein-coupled receptor kinase 5 regulates beta 1-adrenergic receptor association with PSD-95 | journal = The Journal of Biological Chemistry | volume = 277 | issue = 2 | pages = 1607–13 | date = Jan 2002 | pmid = 11700307 | doi = 10.1074/jbc.M107297200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Ranade K, Jorgenson E, Sheu WH, Pei D, Hsiung CA, Chiang FT, Chen YD, Pratt R, Olshen RA, Curb D, Cox DR, Botstein D, Risch N | title = A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate | journal = American Journal of Human Genetics | volume = 70 | issue = 4 | pages = 935–42 | date = Apr 2002 | pmid = 11854867 | pmc = 379121 | doi = 10.1086/339621 }} | ||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{ | == External links == | ||
{{G protein-coupled receptors}} | * {{UCSC gene info|ADRB1}} | ||
* {{cite web | url = http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2187 | title = β<sub>1</sub>-adrenoceptor | accessdate = | format = | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | pages = | quote = }} | |||
{{G protein-coupled receptors|g1}} | |||
[[ | [[Category:Adrenergic receptors]] |
Latest revision as of 15:18, 16 December 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
The beta-1 adrenergic receptor (β1 adrenoceptor), also known as ADRB1, is a beta-adrenergic receptor, and also denotes the human gene encoding it.[1] It is a G-protein coupled receptor associated with the Gs heterotrimeric G-protein and is expressed predominantly in cardiac tissue.
Receptor
Actions
Actions of the β1 receptor include:
Effect/Tissue | ||
---|---|---|
Muscular | Increase cardiac output | cardiac muscle |
Increase heart rate (chronotropic effect) | sinoatrial node (SA node) [2] | |
Increase atrial contractility (inotropic effect) | cardiac muscle | |
Increases contractility and automaticity | ventricular cardiac muscle [2] | |
Increases conduction and automaticity | atrioventricular node (AV node)[2] | |
Relaxation | urinary bladder wall[3] | |
Exocrine | Renin release | juxtaglomerular cells.[2] |
stimulate viscous, amylase-filled secretions | ||
Other | Lipolysis | adipose tissue.[2] |
The receptor is also present in the cerebral cortex.
Agonists
Isoprenaline has higher affinity for β1 than adrenaline, which, in turn, binds with higher affinity than noradrenaline at physiologic concentrations. Selective agonists to the beta-1 receptor are:
Antagonists
(Beta blockers) β1-selective antagonists include:
- Acebutolol (in hypertension, angina pectoris and arrhythmias)
- Atenolol[4] (in hypertension, coronary heart disease, arrhythmias and myocardial infarction)
- Betaxolol (in hypertension and glaucoma)
- Bisoprolol[5] (in hypertension, coronary heart disease, arrhythmias, myocardial infarction and ischemic heart diseases)
- Esmolol (in arrhythmias)
- Metoprolol[4] (in hypertension, coronary heart disease, myocardial infarction and heart failure)
- Nebivolol (in hypertension)
- Vortioxetine (antidepressant)
Mechanism in cardiac myocytes
Gs exerts its effects via two pathways. Firstly, it directly opens L-type calcium channels (LTCC) in the plasma membrane. Secondly, it renders adenylate cyclase activated, resulting in an increase of cAMP, activating protein kinase A (PKA) which in turn phosphorylates several targets, such as phospholamban, LTCC, Troponin I (TnI), and potassium channels. Phospholamban phosphorylates deactivates its function which is normally inhibition of SERCA on the sarcoplasmic reticulum (SR) in cardiac myocytes. Due to this, more calcium enters the SR and is therefore available for the next contraction. LTCC phosphorylatation increases its open probability and therefore allows more calcium to enter the myocyte upon cell depolarisation. Both of these mechanisms increase the available calcium for contraction and therefore increase inotropy. Conversely, TnI phosphorylation results in its facilitated dissociation of calcium from troponin C (TnC) which fastens the muscle relaxation (positive lusitropy). Potassium channel phosphorylates increases its open probability which results in shorter refractory period (because the cell repolarises faster), also increasing lusitropy. Furthermore, in nodal cells such as in the SA node, cAMP directly binds to and opens the HCN channels, increasing their open probability, which increases chronotropy.[6]
Gene
Specific polymorphisms in the ADRB1 gene have been shown to affect the resting heart rate and can be involved in heart failure.[1]
Interactions
Beta-1 adrenergic receptor has been shown to interact with DLG4[7] and GIPC1.[8] Interaction between testosterone and β-1 ARs have been shown in anxiolytic behaviors in the basolateral amygdala.[9]
See also
- Other adrenergic receptors
References
- ↑ 1.0 1.1 "Entrez Gene: ADRB1 adrenergic, beta-1-, receptor".
- ↑ 2.0 2.1 2.2 2.3 2.4 Fitzpatrick, David; Purves, Dale; Augustine, George (2004). "Table 20:2". Neuroscience (Third ed.). Sunderland, Mass: Sinauer. ISBN 0-87893-725-0.
- ↑ Moro C, Tajouri L, Chess-Williams R (January 2013). "Adrenoceptor function and expression in bladder urothelium and lamina propria". Urology. 81 (1): 211.e1–7. doi:10.1016/j.urology.2012.09.011. PMID 23200975.
- ↑ 4.0 4.1 4.2 4.3 4.4 Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4. Page 163
- ↑ American Society of Health-System Pharmacists, Inc. (2005-01-01). "Bisoprolol". MedlinePlus Drug Information. U.S. National Library of Medicine, National Institutes of Health. Archived from the original on 2008-05-20. Retrieved 2008-06-06.
- ↑ Medical physiology : a cellular and molecular approach. Boron, Walter F.,, Boulpaep, Emile L., (Updated second ed.). Philadelphia, PA. ISBN 9781437717532. OCLC 756281854.
- ↑ Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA (Dec 2000). "beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors". The Journal of Biological Chemistry. 275 (49): 38659–66. doi:10.1074/jbc.M005938200. PMID 10995758.
- ↑ Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT, Lefkowitz RJ (Jul 2003). "GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation". The Journal of Biological Chemistry. 278 (28): 26295–301. doi:10.1074/jbc.M212352200. PMID 12724327.
- ↑ Mard-Soltani M, Kesmati M, Khajehpour L, Rasekh A, Shamshirgar-Zadeh A (April 2012). "Interaction between Anxiolytic Effects of Testosterone and β-1 Adrenoceptors of Basolateral Amygdala". International Journal of Pharmacology. 8 (5): 344–354. doi:10.3923/ijp.2012.344.354.
Further reading
- Frielle T, Kobilka B, Lefkowitz RJ, Caron MG (Jul 1988). "Human beta 1- and beta 2-adrenergic receptors: structurally and functionally related receptors derived from distinct genes". Trends in Neurosciences. 11 (7): 321–4. doi:10.1016/0166-2236(88)90095-1. PMID 2465637.
- Muszkat M (Aug 2007). "Interethnic differences in drug response: the contribution of genetic variability in beta adrenergic receptor and cytochrome P4502C9". Clinical Pharmacology and Therapeutics. 82 (2): 215–8. doi:10.1038/sj.clpt.6100142. PMID 17329986.
- Yang-Feng TL, Xue FY, Zhong WW, Cotecchia S, Frielle T, Caron MG, Lefkowitz RJ, Francke U (Feb 1990). "Chromosomal organization of adrenergic receptor genes". Proceedings of the National Academy of Sciences of the United States of America. 87 (4): 1516–20. doi:10.1073/pnas.87.4.1516. PMC 53506. PMID 2154750.
- Forse RA, Leibel R, Gagner M (Jan 1989). "The effect of Escherichia coli endotoxin on the adrenergic control of lipolysis in the human adipocyte". The Journal of Surgical Research. 46 (1): 41–8. doi:10.1016/0022-4804(89)90180-7. PMID 2536864.
- Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (Nov 1987). "Cloning of the cDNA for the human beta 1-adrenergic receptor". Proceedings of the National Academy of Sciences of the United States of America. 84 (22): 7920–4. doi:10.1073/pnas.84.22.7920. PMC 299447. PMID 2825170.
- Stiles GL, Strasser RH, Lavin TN, Jones LR, Caron MG, Lefkowitz RJ (Jul 1983). "The cardiac beta-adrenergic receptor. Structural similarities of beta 1 and beta 2 receptor subtypes demonstrated by photoaffinity labeling". The Journal of Biological Chemistry. 258 (13): 8443–9. PMID 6305985.
- Hoehe MR, Otterud B, Hsieh WT, Martinez MM, Stauffer D, Holik J, Berrettini WH, Byerley WF, Gershon ES, Lalouel JM (Jun 1995). "Genetic mapping of adrenergic receptor genes in humans". Journal of Molecular Medicine. 73 (6): 299–306. doi:10.1007/BF00231616. PMID 7583452.
- Elies R, Ferrari I, Wallukat G, Lebesgue D, Chiale P, Elizari M, Rosenbaum M, Hoebeke J, Levin MJ (Nov 1996). "Structural and functional analysis of the B cell epitopes recognized by anti-receptor autoantibodies in patients with Chagas' disease". Journal of Immunology. 157 (9): 4203–11. PMID 8892658.
- Oldenhof J, Vickery R, Anafi M, Oak J, Ray A, Schoots O, Pawson T, von Zastrow M, Van Tol HH (Nov 1998). "SH3 binding domains in the dopamine D4 receptor". Biochemistry. 37 (45): 15726–36. doi:10.1021/bi981634+. PMID 9843378.
- Mason DA, Moore JD, Green SA, Liggett SB (Apr 1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor". The Journal of Biological Chemistry. 274 (18): 12670–4. doi:10.1074/jbc.274.18.12670. PMID 10212248.
- Moore JD, Mason DA, Green SA, Hsu J, Liggett SB (Sep 1999). "Racial differences in the frequencies of cardiac beta(1)-adrenergic receptor polymorphisms: analysis of c145A>G and c1165G>C". Human Mutation. 14 (3): 271. doi:10.1002/(SICI)1098-1004(1999)14:3<271::AID-HUMU14>3.0.CO;2-Q. PMID 10477438.
- Tang Y, Hu LA, Miller WE, Ringstad N, Hall RA, Pitcher JA, DeCamilli P, Lefkowitz RJ (Oct 1999). "Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor". Proceedings of the National Academy of Sciences of the United States of America. 96 (22): 12559–64. doi:10.1073/pnas.96.22.12559. PMC 22990. PMID 10535961.
- Podlowski S, Wenzel K, Luther HP, Müller J, Bramlage P, Baumann G, Felix SB, Speer A, Hetzer R, Köpke K, Hoehe MR, Wallukat G (2000). "Beta1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy?". Journal of Molecular Medicine. 78 (2): 87–93. doi:10.1007/s001090000080. PMID 10794544.
- Shiina T, Kawasaki A, Nagao T, Kurose H (Sep 2000). "Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors". The Journal of Biological Chemistry. 275 (37): 29082–90. doi:10.1074/jbc.M909757199. PMID 10862778.
- Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA (Dec 2000). "beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors". The Journal of Biological Chemistry. 275 (49): 38659–66. doi:10.1074/jbc.M005938200. PMID 10995758.
- Börjesson M, Magnusson Y, Hjalmarson A, Andersson B (Nov 2000). "A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure". European Heart Journal. 21 (22): 1853–8. doi:10.1053/euhj.1999.1994. PMID 11052857.
- Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA (Nov 2001). "beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95". The Journal of Biological Chemistry. 276 (44): 41310–7. doi:10.1074/jbc.M107480200. PMID 11526121.
- Hu LA, Chen W, Premont RT, Cong M, Lefkowitz RJ (Jan 2002). "G protein-coupled receptor kinase 5 regulates beta 1-adrenergic receptor association with PSD-95". The Journal of Biological Chemistry. 277 (2): 1607–13. doi:10.1074/jbc.M107297200. PMID 11700307.
- Ranade K, Jorgenson E, Sheu WH, Pei D, Hsiung CA, Chiang FT, Chen YD, Pratt R, Olshen RA, Curb D, Cox DR, Botstein D, Risch N (Apr 2002). "A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate". American Journal of Human Genetics. 70 (4): 935–42. doi:10.1086/339621. PMC 379121. PMID 11854867.
External links
- Human ADRB1 genome location and ADRB1 gene details page in the UCSC Genome Browser.
- "β1-adrenoceptor". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.