FFAR2 mRNA is expressed in adipose tissue, pancreas, spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells.[2][3] FFAR2 transcription is regulated by the XBP1 transcription factor which binds to the core promoter.[4]
Function
Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.[5]Short Chain Fatty Acids (SCFA's) generated in the processing of fiber by intestinal microbiota act as ligands for the receptor and can affect neutrophil chemotaxis.[6][7] However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.[8][9][10]
↑Nilsson NE, Kotarsky K, Owman C, Olde B (2003). "Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids". Biochem. Biophys. Res. Commun. 303 (4): 1047–52. doi:10.1016/S0006-291X(03)00488-1. PMID12684041.
↑Le Poul E, Loison C, Struyf S (2003). "Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation". J. Biol. Chem. 278 (28): 25481–9. doi:10.1074/jbc.M301403200. PMID12711604.
"Free Fatty Acid Receptors: FFA2". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.
Further reading
Brown AJ, Jupe S, Briscoe CP (2005). "A family of fatty acid binding receptors". DNA Cell Biol. 24 (1): 54–61. doi:10.1089/dna.2005.24.54. PMID15684720.
Sawzdargo M, George SR, Nguyen T, et al. (1997). "A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1". Biochem. Biophys. Res. Commun. 239 (2): 543–7. doi:10.1006/bbrc.1997.7513. PMID9344866.
Senga T, Iwamoto S, Yoshida T, et al. (2003). "LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3". Blood. 101 (3): 1185–7. doi:10.1182/blood-2002-06-1881. PMID12393494.
Brown AJ, Goldsworthy SM, Barnes AA, et al. (2003). "The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids". J. Biol. Chem. 278 (13): 11312–9. doi:10.1074/jbc.M211609200. PMID12496283.
Nilsson NE, Kotarsky K, Owman C, Olde B (2003). "Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids". Biochem. Biophys. Res. Commun. 303 (4): 1047–52. doi:10.1016/S0006-291X(03)00488-1. PMID12684041.
Le Poul E, Loison C, Struyf S, et al. (2003). "Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation". J. Biol. Chem. 278 (28): 25481–9. doi:10.1074/jbc.M301403200. PMID12711604.
Grimwood J, Gordon LA, Olsen A, et al. (2004). "The DNA sequence and biology of human chromosome 19". Nature. 428 (6982): 529–35. doi:10.1038/nature02399. PMID15057824.
Yonezawa T, Kobayashi Y, Obara Y (2007). "Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF-7 human breast cancer cell line". Cell. Signal. 19 (1): 185–93. doi:10.1016/j.cellsig.2006.06.004. PMID16887331.