A1BG response element negative results
Associate Editor(s)-in-Chief: Henry A. Hoff
Def. nucleotide "sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents", [that] "may be found in both promoter and enhancer regions"[1] are called response elements.
Hypotheses
- A1BG has no response elements in either promoter.
- A1BG is not transcribed by a response element.
- Each response element does not participate in the transcription of A1BG.
Response element negative results
Name of elements | Consensus sequences | Testing | Notes |
---|---|---|---|
Abbreviations | variations | number of runs per symmetry | |
Authors | |||
novel ABA-response elements
(ABREN, novel ABRE) |
GATCGATC, CGATCGAT, GATCGAT | 16 | ABREN, CGATCGAT motif, and core of ABREN and CGATCGAT motif.[2] |
ABA-response element-like
(ABRE-like) |
ACGTGTCC | 16 | third highest scoring motif[2] |
Abf1 regulatory factors | CGTCCTCTACG | 16 | CGTNNNNNACGAT[3] |
Activating proteins
(AP-2) |
GCCCACGGG | 16 | Activating protein 2[4] |
Activating proteins
(AP-2) |
GGCCAA | 16 | Activating protein 2 (AP-2)[5] |
AhR-responsive elements
(AHRE) (Yao) |
(G/T)NGCGTG(A/C)(C/G)A | 16 | in the promoter region of AhR responsive genes |
Alpha-amylase conserved elements | TATCCA | 16 | TATCCATCCATCC[6] |
Amino acid response elements
(AARE) (Maruyama) |
ATTGCATCA | 16 | AARE1 (ATTGCATCA)[7] |
Amino acid response elements
(AARE) (Broer) |
TTTGCATCA | 16 | TTTGCATCA.[8][9] |
Amino acid response element-like
(AARE-like) |
TGGTGAAAG | 16 | AARE-like sequence (TGGTGAAAG, named AARE3)[7] |
Androgen response elements
(AREs) (Kouhpayeh) |
GGTACANNNTGTTCT[10] | 16 | GGTACACGGTGTTCT[10] |
Androgen response elements
(AREs) (Wilson) |
TGATTCGTGAG | 16 | AGAACANNNTGTTCT[11] |
Antioxidant-electrophile responsive elements | GTGAGGTCGC | 16 | GTGAGGTCGC[12] or GCTGAGT, GCAGGCT of GC(A/C/T)(A/G/T)(A/G/T)(C/G/T)T(A/C)A[13], an antioxidant response element (ARE) |
CAAT boxes | (C/T)(A/G)(A/G)CCAATC(A/G) | 16 | consensus sequence for the CCAAT-enhancer-binding site (C/EBP) is TAGCATT |
Calcium-response elements | CTATTTCGAG | 16 | CaRE1 CTATTTCGAG[14] |
Carbohydrate response elements
(ChREs) |
CACGTGACCGGATCTTG, TCCGCCCCCATCACGTG | 16 | ChoRE1, ChoRE2[15] |
Carbon source-responsive elements
(CSREs) |
CATTCATCCG | 16 | confers carbon source-dependent regulation[16] |
Cbf1 regulatory factors | TCACGTGA | 8 | strongly bound Cbf1 motifs enriched at both ends with a "T" on the 5′ and "A" on the 3′ end |
C-boxes | GAGGCCATCT | 16 | GAGGCCATCT[17] |
C/A hybrid boxes | TGACGTAT | 16 | TGACGTAT[18] A at the 12 position |
C/T hybrid boxes | TGACGTTA | 16 | TGACGTTA[18] T at the 12 position |
CCCTC-binding factors
(CTCF) |
NCA-NNA-G(A/G)N-GGC-(A/G)(C/G)(C/T) | 16 | NCA-NNA-G(G/A)N-GGC-(G/A)(C/G)(T/C)[19] |
C/EBP boxes | TTAGGACAT,[20] or TAGCATT[5] | 16 | CCAAT-enhancer-binding site (C/EBP) is TAGCATT |
Cell-cycle boxes
(CCBs) |
CACGAAAA | 16 | more relaxed variants are present |
Cell cycle regulation | CCCAACGGT[6] | 16 | tomato genome-wide analysis |
CENP-B boxes | TTTCGTTGGAAGCGGGA | 16 | specifically localized at the centromere |
Coupling elements
(CEs) |
TGCCACCGG[2] | 16 | CE1 (Watanabe) |
Constitutive decay elements
(Siegel) (CDEs) |
CCUUCYRYGAAGG, CCTTC(C/T)(A/G)(C/T)GAAGG | 16 | TTCCATGAA at 128 but no CC or GG at the ends |
DAF-16-associated elements
(DAE) |
TGATAAG | 16 | DAF-16-associated element (DAE)[21] |
D-boxes
(Mracek1) |
GTTGTATAAC | 16 | GTTGTATAAC[22] |
D-boxes
(Mracek) |
CTTATGTAAA (Mracek2) | 16 | CTTATGTAAA[22] |
D-boxes
(Johnson) |
TCTCACA | 16 | TCTCACATT(A/C)AATAAGTCA is a D-box.[17] |
Defense and stress-responsive elements | ATTTTCTTCA | 16 | (ATTTTCTTCA)[6] |
DNA damage response elements
(DREs) (Smith) |
TTTCAAT[23] | 16 | in the upstream repression sequence (URS) |
DNA damage response elements
(DREs) (Sumrada) |
TAGCCGCCG of TAGCCGCCGRRRR[24] | 16 | in the upstream repression sequence (URS) |
DNA replication-related elements
(DREs) |
TATCGATA | 16 | DNA replication-related element (DRE)[25] |
DREB boxes | TACCGACAT | 16 | CRT/DREB box |
EIF4E basal elements | TTACCCCCCCTT | 16 | poly(C) motif |
Endoplasmic reticulum stress response elements
(ERSE) |
CCAAT | 16 | CCAATGGGCTGAAAC between ZNF497 and A1BG, compare CCAAT-box and ERSE |
Estrogen response elements
(EREs) |
AGGTTA or GGTCAGGAT | 16 | AGGTTATTGCCTCCT or GGTCAGGATGAC |
F boxes | TGATAAG[26] | 16 | F-box overlaps the I-box |
Forkhead boxes | GTAAACAA[27] | 16 | GTAAACAA FOXO1 |
Gal4ps | CGGACCGC | 16 | CGG(A/G)NN(A/G)C(C/T)N(C/T)NCNCCG[28] |
Gibberellin responsive element-like 2
(GARE-like 2) |
TAACGTA[29] | 16 | "in the promoters of hydrolase genes".[29] |
G boxes | (G/T)CCACGTG(G/T)C | 16 | no "perfect palindrome" G boxes in either promoter |
GCN4 motifs | TGACTCA, TGAGTCA | 16 | ACGT motif |
Gcn4ps | ATGACTCTT[28] | 16 | GCN4 motifs |
GLM boxes | (G/A)TGA(G/C)TCA(T/C) | 16 | GCN4-like motif |
γ-interferon activated sequences
(GAS) |
TTCCTAGAA | 16 | ALS-GAS1 between nt −633 and nt −625 |
Grainy head transcription factor binding sites | AACCGGTT | 8 | also GACTGGTT |
GT boxes
(Motojima) |
TGGGTGGGGCT | 16 | (-78 to -69) |
Hapless motifs | CCAATCA | 16 | heterotrimeric transcription factor, HAP2/3/4.[30] |
Heat-responsive elements | AAAAAATTTC | 16 | four nGAAn motifs |
Heat shock elements
(HSE1) (Eastmond) |
nGAAnnTTCnnGAAn | 16 | HSE1 |
Heat shock elements
(HSE2) (Eastmond) |
nTTCnnGAAnnTTCn | 16 | HSE2 is the inverse complement of HSE1 |
Heat shock elements
(HSE5) (Eastmond) |
nTTCn-(5-bp)-nTTCnnGAAn | 16 | HSE5 |
Heat shock elements
(HSE6) (Eastmond) |
nTTCn-nnGAAn-(5-bp)-nGAAn | 16 | HSE6 |
Heat shock elements
(HSE7) (Eastmond) |
nGA(A/G)nnTTCnnGAAn | 16 | HSE7 PFT1 |
Heat shock elements
(HSE) (Eastmond) |
nGAAnnTTCnnGA(A/G)n | 16 | HSE7 PFT2 |
Heat shock elements
(HSE10) (Eastmond) |
nTTCn-(11-bp)-nGAAn-(5 bp)-nGAAn | 16 | HSE10 |
Hypoxia-inducible factors | GCCCTACGTGCTGTCTCA[31] | 16 | composed of HIF-1α and HIF-1β |
I boxes | GATAAG | 16 | GGATGAGATAAGA |
Inositol, choline-responsive elements
(ICRE) (Case) |
CANNTGAAAT | 16 | version of Lopes, see below |
Inositol, choline-responsive elements
(ICRE) (Lopes) |
ATGTGAAAT | 16 | using ANNTGAAAT |
Interferon-stimulated response elements
(ISRE) (Michalska) |
AGTTTCNNTTTCN | 16 | similar to GAAANNGAAA.[32] |
K-boxes | GTTCGGNNANCCNNAC | 16 | GTTCGG-NNAN-CCNNAC[33] |
Kozak sequences | GCCGCC(A/G)CCATGG | 16 | GCCGCC(A/G)CCATGG[34] |
Kozak sequences
(Matsumoto) |
GAAAATGG | 16 | GAAAATGG[35] |
L boxes | AAATTAACCAA | 16 | AAATTAACCAA[36] |
Maf recognition element
(MAREs) |
TGCTGA(G/C)TCAGCA | 16 | and TGCTGA(GC/CG)TCAGCA[37] |
M boxes | GTCATGTGCT | 16 | or AGTCATGTGCT[38] |
Mcm1 regulatory factors | TT(A/T)CCNN(A/T)TNGG(A/T)AA | 16 | Primary consensus sequence apparently: TT(A/T)CCNN(A/T)TNGG(A/T)AA.[3] |
Mcm1 regulatory factors
(Rossi) |
TTNCCNNNTNNGGNAA | 16 | Primary consensus sequence apparently: TT(A/T)CCNN(A/T)TNGG(A/T)AA.[3] |
Motif ten elements | C(C/G)A(A/G)C(C/G)(C/G)AACG(C/G) | 16 | Gene ID: 6309 |
NF‐κB/Rel family of eukaryotic transcription factors | CCCCTAAGGGG | 16 | NF-κB |
Nuclear factor 1
(NF-1) |
TTGGCNNNNNGCCAA | 8 | palindromic sequence |
Nuclear factor Ys | CCAATGG(A/C)(A/G) | 16 | NF-Y is a trimeric complex |
p63 DNA binding sites | (A/G)(A/G)(A/G)C(A/G)(A/T)G(C/T)(C/T)(C/T)(A/G)(A/G)(A/G)C(A/T)(C/T)G(C/T)(C/T)(C/T) | 16 | RRRC(A/G)(A/T)GYYYRRRC(A/T)(C/T)GYYY |
Pdr1p/Pdr3ps | TCCGCGGA | 4 | Pdr1p/Pdr3p response elements (PDREs) |
Peroxisome proliferator-activated receptor alpha | CGACCCCT | 16 | Or, CGACCGCT.[15] |
Peroxisome proliferator hormone response elements
(PPREs) |
AGGTCANAGGTCA | 16 | PPARs/RXRs heterodimers bind to PPRE |
Pollen1 with TCCACCATA | AGAAANNNNTCCACCATA | 16 | adjacent co-dependent regulatory element TCCACCATA |
Polycomb response elements | CGCCAT(A/T)TT | 16 | CGCCATTT |
Rap1 regulatory factors | ACCC(A/G)N(A/G)CA | 16 | "(ACCCRnRCA), less than half of the sites were detectably bound"[3] |
Extended Reb1 | ATTACCCGAA | 16 | "extended motif VTTACCCGNH (IUPAC nomenclature) (Rhee and Pugh 2011)."[3] |
Rlm1ps | CTATATATAG | 8 | CTA(T/A)4TAG |
Rox1ps | RRRTAACAAGAG | 16 | Heme-dependent repressor of hypoxic genes.[28] |
Rpn4ps | GGTGGCAAA | 16 | proteasome genes |
Seed-specific elements | CATGCATG | 8 | SRE consensus: CAGCAGATTGCG is none |
Shoot specific elements | GATAATGATG | 16 | SRE consensus: CAGCAGATTGCG is none |
Sip4ps | CCGTCCGT | 16 | CC(C/G)T(C/T)C(C/G)TCCG |
Smp1ps | ACTACTA | 16 | 5-ACTACTA(T/A)4TAG |
SP1
(Long) |
GGGGCGGGCC | 16 | GGGGCGGGCC[15] |
Sterol response elements
(Branco) |
TCGTATA | 16 | perhaps plant specific |
Sterol response elements
(Yao) |
NAGCAGATTGCG | 16 | liver specific |
TATCCAC boxes | TATCCAC | 16 | GA responsive complex component |
TCCACCATA elements | TCCACCATA | 16 | adjacent co-dependent regulatory element of POLLEN1 |
Tetradecanoylphorbol-13-acetate response elements
(TREs) |
TGA(G/C)TCA | 16 | cis-regulatory element of the human metallothionein IIa (hMTIIa) promoter and SV40 |
TGF-β control elements
(TCEs) |
GAGTGGGGCG | 16 | in mouse and rat, GCGTGGGGGA in humans |
TGF-β inhibitory elements
(TIEs) |
GAGTGGTGA | 16 | in the rat transin/stromelysin promoter |
Vhr1ps | AATCA-N8-TGA(C/T)T | 16 | "enhanced by low extracellular biotin."[39] |
Vitamin D response elements
(VDREs) |
A/GGG/TTCAnnnA/GGG/TTCA | 16 | (A/G)G(G/T)TCANNN(A/G)G(G/T)TCA |
X boxes | GTTGGCATGGCAAC | 16 | X2 box is AGGTCCA not ⌘F |
X-boxes | GT(A/C/T)N(C/T)(C/T)AT(A/G)(A/G)NAAC | 16 | includes GTTNCCATGGNAAC |
Xbp1ps | GcCTCGA(G/A)G(C/A)g(a/g) | 16 | Transcriptional repressor |
Xenobiotic response elements
(XREs) |
(T/G)NGCGTG(A/C)(G/C)A | 16 | contains the core sequence GCGTG, see AhR-responsive elements |
Y boxes | (A/G)CTAACC(A/G)(A/G)(C/T) | 16 | inverted CAAT box |
YY1 binding sites | CCATTTA | 16 | YY1 represses Tug1 transcription[15] |
Zap1ps | ACCCTCA | 16 | ACC(C/T)(C/T)(A/C/G/T)AAGGT |
Acknowledgements
The content on this page was first contributed by: Henry A. Hoff.
See also
References
- ↑ MeSH (8 July 2008). "Response Elements". U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894: National Institutes of Health, Health & Human Services. Retrieved 2 September 2020.
- ↑ 2.0 2.1 2.2 Kenneth A. Watanabe; Arielle Homayouni; Lingkun Gu; Kuan‐Ying Huang; Tuan‐Hua David Ho; Qingxi J. Shen (18 June 2017). "Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element". Plant, Cell & Environment. 40 (9): 2004–2016. doi:10.1111/pce.13006. Retrieved 5 October 2020.
- ↑ 3.0 3.1 3.2 3.3 3.4 Matthew J. Rossi; William K.M. Lai; B. Franklin Pugh (21 March 2018). "Genome-wide determinants of sequence-specific DNA binding of general regulatory factors". Genome Research. 28: 497–508. doi:10.1101/gr.229518.117. PMID 29563167. Retrieved 31 August 2020.
- ↑ Takayuki Murata; Chieko Noda; Yohei Narita1; Takahiro Watanabe; Masahiro Yoshida; Keiji Ashio; Yoshitaka Sato; Fumi Goshima; Teru Kanda; Hironori Yoshiyama; Tatsuya Tsurumi; Hiroshi Kimura (27 January 2016). "Induction of Epstein-Barr Virus Oncoprotein Latent Membrane Protein 1 (LMP1) by Transcription Factors Activating Protein 2 (AP-2) and Early B Cell Factor (EBF)" (PDF). Journal of Virology. doi:10.1128/JVI.03227-15. Retrieved 4 October 2020.
- ↑ 5.0 5.1 Yao EF; Denison MS (June 1992). "DNA sequence determinants for binding of transformed Ah receptor to a dioxin-responsive enhancer". Biochemistry. 31 (21): 5060–7. doi:10.1021/bi00136a019. PMID 1318077.
- ↑ 6.0 6.1 6.2 Bhaskar Sharma; Joemar Taganna (12 June 2020). "Genome-wide analysis of the U-box E3 ubiquitin ligase enzyme gene family in tomato". Scientific Reports. 10 (9581). doi:10.1038/s41598-020-66553-1. PMID 32533036 Check
|pmid=
value (help). Retrieved 27 August 2020. - ↑ 7.0 7.1 Ryuto Maruyama; Makoto Shimizu; Juan Li, Jun Inoue; Ryuichiro Sato (24 March 2016). "Fibroblast growth factor 21 induction by activating transcription factor 4 is regulated through three amino acid response elements in its promoter region". Bioscience, Biotechnology, and Biochemistry. 80 (5): 929–934. doi:10.1080/09168451.2015.1135045. Retrieved 4 October 2020.
- ↑ Angelika Bröer; Gregory Gauthier-Coles; Farid Rahimi; Michelle van Geldermalsen; Dieter Dorsch; Ansgar Wegener; Jeff Holst; Stefan Bröer (March 15, 2019). "Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells" (PDF). Journal of Biological Chemistry. 294 (11): 4012–4026. doi:10.1074/jbc.RA118.006378. Retrieved 4 October 2020.
- ↑ Alisa A. Garaeva; Irina E. Kovaleva; Peter M. Chumakov; Alexandra G. Evstafieva (15 January 2016). "Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4". Cell Cycle. 15 (1): 64–71. doi:10.1080/15384101.2015.1120929. PMID 26771712. Retrieved 5 September 2020.
- ↑ 10.0 10.1 S Kouhpayeh; AR Einizadeh; Z Hejazi; M Boshtam; L Shariati; M Mirian; L Darzi; M Sojoudi; H Khanahmad; A Rezaei (1 July 2016). "Antiproliferative effect of a synthetic aptamer mimicking androgen response elements in the LNCaP cell line" (PDF). Cancer Gene Therapy. 23: 254–257. doi:10.1038/cgt.2016.26. Retrieved 3 October 2020.
- ↑ Stephen Wilson; Jianfei Qi; Fabian V. Filipp (14 September 2016). "Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines". Scientific Reports. 6: 32611. doi:10.1038/srep32611. Retrieved 3 October 2020.
- ↑ Akihito Otsuki; Mikiko Suzuki; Fumiki Katsuoka; Kouhei Tsuchida; Hiromi Suda; Masanobu Morita; Ritsuko Shimizu; Masayuki Yamamoto (February 2016). "Unique cistrome defined as CsMBE is strictly required for Nrf2-sMaf heterodimer function in cytoprotection". Free Radical Biology and Medicine. 91: 45–57. doi:10.1016/j.freeradbiomed.2015.12.005. PMID 26677805. Retrieved 21 August 2020.
- ↑ Sarah E. Lacher; Daniel C. Levings; Samuel Freeman; Matthew Slattery (October 2018). "Identification of a functional antioxidant response element at the HIF1A locus". Redox Biology. 19: 401–411. doi:10.1016/j.redox.2018.08.014. Retrieved 6 October 2020.
- ↑ Xu Tao; Anne E. West; Wen G. Chen; Gabriel Corfas; Michael E. Greenberg (2002). "A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF". Neuron. 33: 383–95. doi:10.1016/S0896-6273(01)00561-X. PMID 11832226. Retrieved 2 September 2020.
- ↑ 15.0 15.1 15.2 15.3 Jianyin Long; Daniel L. Galvan; Koki Mise; Yashpal S. Kanwar; Li Li; Naravat Poungavrin; Paul A. Overbeek; Benny H. Chang; Farhad R. Danesh (28 May 2020). "Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1" (PDF). Journal of Biological Chemistry. 5 (28). doi:10.1074/jbc.RA120.013228. Retrieved 6 October 2020.
- ↑ A Schöler and H J Schüller (June 1994). "A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae" (PDF). Molecular and Cellular Biology. 14 (6): 3613–3622. Retrieved 9 February 2021.
- ↑ 17.0 17.1 PA Johnson; D Bunick; NB Hecht (1991). "Protein Binding Regions in the Mouse and Rat Protamine-2 Genes" (PDF). Biology of Reproduction. 44 (1): 127–134. doi:10.1095/biolreprod44.1.127. PMID 2015343. Retrieved 6 April 2019.
- ↑ 18.0 18.1 Young Hun Song; Cheol Min Yoo; An Pio Hong; Seong Hee Kim; Hee Jeong Jeong; Su Young Shin; Hye Jin Kim; Dae-Jin Yun; Chae Oh Lim; Jeong Dong Bahk; Sang Yeol Lee; Ron T. Nagao; Joe L. Key; Jong Chan Hong (April 2008). "DNA-Binding Study Identifies C-Box and Hybrid C/G-Box or C/A-Box Motifs as High-Affinity Binding Sites for STF1 and LONG HYPOCOTYL5 Proteins" (PDF). Plant Physiology. 146 (4): 1862–1877. doi:10.1104/pp.107.113217. PMID 18287490. Retrieved 26 March 2019.
- ↑ Hideharu Hashimoto; Dongxue Wang; John R. Horton; Xing Zhang; Victor G. Corces; Xiaodong Cheng (1 June 2017). "Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA". Molecular Cell. 66 (5): 711–720.e3. doi:10.1016/j.molcel.2017.05.004. PMID 28529057. Retrieved 28 August 2020.
- ↑ Ravi P. Misra; Azad Bonni; Cindy K. Miranti; Victor M. Rivera; Morgan Sheng; Michael E.Greenberg (14 October 1994). "L-type Voltage-sensitive Calcium Channel Activation Stimulates Gene Expression by a Serum Response Factor-dependent Pathway" (PDF). The Journal of Biological Chemistry. 269 (41): 25483–25493. PMID 7929249. Retrieved 7 December 2019.
- ↑ Yan-Hui Li; Gai-Gai Zhang (12 April 2016). "Towards understanding the lifespan extension by reduced insulin signaling: bioinformatics analysis of DAF-16/FOXO direct targets in Caenorhabditis elegans". Oncotarget. 7 (15): 19185–19192. doi:10.18632/oncotarget.8313. PMID 2702736. Retrieved 27 August 2020.
- ↑ 22.0 22.1 Philipp Mracek; Cristina Santoriello; M. Laura Idda; Cristina Pagano; Zohar Ben-Moshe; Yoav Gothilf; Daniela Vallone; Nicholas S. Foulkes (December 6, 2012). "Regulation of per and cry Genes Reveals a Central Role for the D-Box Enhancer in Light-Dependent Gene Expression". PLoS ONE. 7 (12): e51278. doi:10.1371/journal.pone.0051278. Retrieved 10 February 2019.
- ↑ Joshua J. Smith, Eric S. Cole, Daniel P. Romero (15 July 2004). "Transcriptional control of RAD51 expression in the ciliate Tetrahymena thermophila". Nucleic Acids Research. 32 (14): 4313–4321. doi:10.1093/nar/gkh771. PMID 15304567. Retrieved 4 September 2020.
- ↑ Roberta A. Sumrada and Terrance G. Cooper (June 1987). "Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast" (PDF). Proceedings of the National Academy of Sciences USA. 84: 3997–4001. doi:10.1073/pnas.84.12.3997. PMID 3295874. Retrieved 6 September 2020.
- ↑ Fumiko Hirose; Masamitsu Yamaguchi; Akio Matsukage (September 1999). "Targeted Expression of the DNA Binding Domain of DRE-Binding Factor, a Drosophila Transcription Factor, Attenuates DNA Replication of the Salivary Gland and Eye Imaginal Disc". Molecular and Cellular Biology. 19 (9): 6020–6028. doi:10.1128/MCB.19.9.6020. PMID 10454549. Retrieved 4 September 2020.
- ↑ Annkatrin Rose, Iris Meier and Udo Wienand (28 October 1999). "The tomato I-box binding factor LeMYBI is a member of a novel class of Myb-like proteins". The Plant Journal. 20 (6): 641–652. doi:10.1046/j.1365-313X.1999.00638.x. Retrieved 8 November 2018.
- ↑ Eiji Yoshihara (18 August 2020). "TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis". Antioxidants. 9 (8): 765–84. doi:10.3390/antiox9080765. PMID 32824669 Check
|pmid=
value (help). Retrieved 5 September 2020. - ↑ 28.0 28.1 28.2 Hongting Tang, Yanling Wu, Jiliang Deng, Nanzhu Chen, Zhaohui Zheng, Yongjun Wei, Xiaozhou Luo, and Jay D. Keasling (6 August 2020). "Promoter Architecture and Promoter Engineering in Saccharomyces cerevisiae". Metabolites. 10 (8): 320–39. doi:10.3390/metabo10080320. PMID 32781665 Check
|pmid=
value (help). Retrieved 18 September 2020. - ↑ 29.0 29.1 Liu-Min Fan, Xiaoyan Feng, Yu Wang and Xing Wang Deng (2007). "Gibberellin Signal Transduction in Rice". Journal of Integrative Plant Biology. 49 (6): 731−741. doi:10.1111/j.1744-7909.2007.00511.x. Retrieved 16 October 2018.
- ↑ Nesrin Ozsarac, Melissa J. Straffon, Hazel E. Dalton, and Ian W. Dawes (March 1997). "Regulation of Gene Expression during Meiosis in Saccharomyces cerevisiae: SPR3 Is Controlled by both ABFI and a New Sporulation Control Element". Molecular and Cellular Biology. 17 (3): 1152–9. doi:10.1128/MCB.17.3.1152. PMC 231840. PMID 9032242.
- ↑ Qingliang Li, Rezaul M. Karim, Mo Cheng, Mousumi Das, Lihong Chen, Chen Zhang, Harshani R. Lawrence, Gary W. Daughdrill, Ernst Schonbrunn, Haitao Ji and Jiandong Chen (July 2020). "Inhibition of p53 DNA binding by a small molecule protects mice from radiation toxicity". Oncogene. 39 (29): 5187–5200. doi:10.1038/s41388-020-1344-y. PMID 32555331 Check
|pmid=
value (help). Retrieved 29 August 2020. - ↑ Mengmeng Lu, Chuanyan Yang, Meijia Li, Qilin Yi, Guangxia Lu, Yichen Wu, Chen Qu, Lingling Wang, and Linsheng Song (May 2018). "A conserved interferon regulation factor 1 (IRF-1) from Pacific oyster Crassostrea gigas functioned as an activator of IFN pathway". Fish & Shellfish Immunology. 76 (May): 68–77. doi:10.1016/j.fsi.2018.02.024. Retrieved 27 March 2021.
- ↑ Masakazu Saito, Satoru Watanabe, Kaori Nimura-Matsune, Hirofumi Yoshikawa1, Hitoshi Nakamoto (10 April 2020). "Regulation of the groESL1 transcription by the HrcA repressor and a novel transcription factor Orf7.5 in the cyanobacterium Synechococcus elongatus PCC7942". The Journal of General and Applied Microbiology. 66 (2): 85–92. doi:10.2323/jgam.2020.02.001. Retrieved 17 March 2021.
- ↑ Marilyn Kozak (October 1987). "An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs". Nucleic Acids Research. 15 (20): 8125–8148. doi:10.1093/nar/15.20.8125. PMID 3313277.
- ↑ Takuya Matsumoto; Saemi Kitajima; Chisato Yamamoto; Mitsuru Aoyagi; Yoshiharu Mitoma; Hiroyuki Harada; Yuji Nagashima (9 August 2020). "Cloning and tissue distribution of the ATP-binding cassette subfamily G member 2 gene in the marine pufferfish Takifugu rubripes" (PDF). Fisheries Science. 86: 873–887. doi:10.1007/s12562-020-01451-z. Retrieved 27 September 2020.
- ↑ Robert G. K. Donald and Anthony R. Cashmore (1990). "Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS‐1A promoter". The EMBO Journal. 9 (6): 1717–1726. doi:10.1002/j.1460-2075.1990.tb08295.x. Retrieved 8 November 2018.
- ↑ Motoki Kyo, Tae Yamamoto, Hozumi Motohashi, Terue Kamiya, Toshihiro Kuroita, Toshiyuki Tanaka, James Douglas Engel, Bunsei Kawakami, Masayuki Yamamoto (13 February 2004). "Evaluation of MafG interaction with Maf recognition element arrays by surface plasmon resonance imaging technique". Genes to Cells. 9 (2). doi:10.1111/j.1356-9597.2004.00711.x. Retrieved 8 September 2020.
- ↑ Corine Bertolotto, Roser Buscà, Patricia Abbe, Karine Bille, Edith Aberdam, Jean-Paul Ortonne, and Robert Ballotti (February 1998). "Different cis-Acting Elements Are Involved in the Regulation of TRP1 and TRP2 Promoter Activities by Cyclic AMP: Pivotal Role of M Boxes (GTCATGTGCT) and of Microphthalmia". Molecular and Cellular Biology. 18 (2): 694–702. PMID 9447965. Retrieved 8 December 2018.
- ↑ Matthias Weider, Agnes Machnik, Franz Klebl and Norbert Sauer (12 May 2006). "Vhr1p, a New Transcription Factor from Budding Yeast, Regulates Biotin-dependent Expression of VHT1 and BIO5". Journal of Biological Chemistry. 281 (19): P13513–P13524. doi:10.1074/jbc.M512158200. Retrieved 8 March 2021.