TATA box histone family

Jump to navigation Jump to search

The TATA box (also called Goldberg-Hogness box)[1] is a DNA sequence (cis-regulatory element) found in the promoter region of genes in archaea and eukaryotes;[2] approximately 24% of human genes contain a TATA box within the core promoter.[3]

Human genes

"TATA-containing genes are more often highly regulated, such as by biotic or stress stimuli."[4] Only "∼10% of these TATA-containing promoters have the canonical TATA box (TATAWAWR)."[4]

"SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box."[5]

Different "TATA box sequences have different abilities to convey the activating signals of certain enhancers and activators in mammalian cells [...] and in yeast [...]."[5]

"SRF is a well established master regulator of the specific family of genes encoding the actin cytoskeleton and contractile apparatus [...], and we found that ~40% of the core promoters for these genes contain a TATA box, which is a significant enrichment compared to the low overall frequency of TATA-containing promoters in human and mouse genomes (...)."[5] "Global frequencies of core promoter types for human [9010 orthologous mouse-human promoter pairs with 1848 TATA-containing or 7162 TATA-less][6] genes with experimentally validated transcription start sites [are known from 2006]."[5] "The TATA box [...] has a consensus sequence of TATAWAAR [...]."[5] W = A or T and R = A or G. We "estimate that ~17% of promoters contain a TATA box".[6]

Gene ID: 3006

"Histones are basic nuclear proteins responsible for nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H1 family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6."[7]

Gene ID: 3008

"Histones are basic nuclear proteins responsible for nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H1 family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6."[8]

Gene ID: 3009

"Histones are basic nuclear proteins responsible for nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H1 family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the small histone gene cluster on chromosome 6p22-p21.3."[9]

Gene ID: 3010

"Histones are basic nuclear proteins responsible for nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H1 family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6."[10]

Gene ID: 3015

"Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene encodes a replication-independent member of the histone H2A family that is distinct from other members of the family. Studies in mice have shown that this particular histone is required for embryonic development and indicate that lack of functional histone H2A leads to embryonic lethality."[11]

Gene ID: 8339

"Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. The protein has antibacterial and antifungal antimicrobial activity. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H2B family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6p22-p21.3."[12]

Gene ID: 8969

"Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the histone microcluster on chromosome 6p21.33."[13]

Gene ID: 8970

"Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H2B family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the histone microcluster on chromosome 6p21.33."[14]

Gene ID: 85235

"Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the histone microcluster on chromosome 6p21.33."[15]

Families of TATA box genes

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

References

  1. R. P. Lifton, M. L. Goldberg, R. W. Karp, and D. S. Hogness (1978). "The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications". Cold Spring Harbor Symposia on Quantitative Biology. 42: 1047–51. doi:10.1101/SQB.1978.042.01.105. PMID 98262.
  2. Stephen T. Smale and James T. Kadonaga (July 2003). "The RNA Polymerase II Core Promoter" (PDF). Annual Review of Biochemistry. 72 (1): 449–79. doi:10.1146/annurev.biochem.72.121801.161520. PMID 12651739. Retrieved 2012-05-07.
  3. C Yang, E Bolotin, T Jiang, FM Sladek, E Martinez (March 2007). "Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters". Gene. 389 (1): 52–65. doi:10.1016/j.gene.2006.09.029. PMID 17123746.
  4. 4.0 4.1 Chuhu Yang, Eugene Bolotin, Tao Jiang, Frances M. Sladek, and Ernest Martinez (10 October 2006). "Prevalence of the Initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters". Gene. 389 (1): 52–65. doi:10.1016/j.gene.2006.09.029. PMID 17123746. Retrieved 2024-06-07.
  5. 5.0 5.1 5.2 5.3 5.4 Muyu Xu, Elsie Gonzalez-Hurtado, and Ernest Martinez (April 2016). "Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1859 (4): 553–563. doi:10.1016/j.bbagrm.2016.01.005. Retrieved 2024-06-08.
  6. 6.0 6.1 Victor X Jin, Gregory AC Singer, Francisco J Agosto-Pérez, Sandya Liyanarachchi, and Ramana V Davuluri (2006). "Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs". BMC Bioinformatics. 7: 114. doi:10.1186/1471-2105-7-114. Retrieved 2024-06-09.
  7. RefSeq (August 2015). "H1-2 H1.2 linker histone, cluster member [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-06-20.
  8. RefSeq (August 2015). "H1-4 H1.4 linker histone, cluster member [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-06-20.
  9. RefSeq (August 2015). "H1-5 H1.5 linker histone, cluster member [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-06-20.
  10. RefSeq (August 2015). "H1-6 H1.6 linker histone, cluster member [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-06-20.
  11. RefSeq (July 2008). "H2AZ1 H2A.Z variant histone 1 [ Homo sapiens ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 2024-06-26.
  12. RefSeq (August 2015). "H2BC8 H2B clustered histone 8 [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-07-10.
  13. RefSeq (August 2015). "H2AC11 H2A clustered histone 11 [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-06-20.
  14. RefSeq (August 2015). "H2BC11 H2B clustered histone 11 [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-07-06.
  15. RefSeq (August 2015). "H2AC12 H2A clustered histone 12 [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-06-23.

External links