CArG box gene transcriptions: Difference between revisions

Jump to navigation Jump to search
Line 226: Line 226:
==See also==
==See also==
{{div col|colwidth=20em}}
{{div col|colwidth=20em}}
* [[A1BG gene transcriptions]]
* [[CAAT box gene transcriptions]]
* [[CAAT box gene transcriptions]]
* [[C and D box gene transcriptions]]
* [[C and D box gene transcriptions]]

Revision as of 02:17, 28 December 2019

Editor-In-Chief: Henry A. Hoff

File:Smooth muscle cell CArG.jpeg
The diagram shows a model for epigenetic regulation of SRF binding to CArG box chromatin. Credit: Oliver G. McDonald, Brian R. Wamhoff, Mark H. Hoofnagle, and Gary K. Owens.

CArG boxes are present in the promoters of smooth muscle cell genes. Template:TOCright

Boxes

Def. "a repeating sequence of nucleotides that forms a transcription or a regulatory signal"[1] is called a box.

Consensus sequences

"CArG box [CC(A/T)6GG] DNA [consensus] sequences present within the promoters of SMC genes play a pivotal role in controlling their transcription".[2]

The consensus sequence of CC(A/T)6GG is confirmed.[3]

"MADS-box proteins bind to a consensus sequence, the CArG box, that has the core motif CC(A/T)6GG (15)."[4]

"Of the [Flowering Locus C] FLC binding sites, 69% contained at least one CArG-box motif with the core consensus sequence CCAAAAAT(G/A)G and an AAA extension at the 3′ end [...]."[4]

Three "other MADS-box flowering-time regulators, SOC1, SVP, and AGAMOUS-LIKE 24 (AGL24), bind to two different CArG-box motifs at 502 bp (CTAAATATGG) and 287 bp (CAATAATTGG) upstream of the translation start in the SEP3 gene (24), consistent with different specificities for the different MADS-box proteins."[4] These together with the core motif CC(A/T)6GG (15) suggest a more general CArG-box motif of (C(C/A/T)(A/T)6(A/G)G).

Smooth muscle cells

"Serum response factor (SRF) controls [ smooth muscle cell ] SMC gene transcription via binding to CArG box DNA sequences found within genes that exhibit SMC-restricted expression."[2]

"SMC genes examined in this study display SMC-specific histone modifications at the 5′-CArG boxes."[2]

"The SRF-CArG association is required for transcriptional activation of SMC genes [...] the SMC genes examined in this study display SMC-specific histone modifications at the 5′-CArG boxes. [...] enrichment of H4 and H3 acetylation [...] were relatively low from positions –2,800 to –1,600 in the 5′ region. However, at position –1,600 to –1,200, there was a sharp rise in these modifications, which was increased even further at +400 in the coding region. We observed similar patterns for H3K4dMe and H3 Lys79 di-methylation [...]. SRF, TFIID, and RNA polymerase II displayed enrichments that were consistent with the positions of the CArG boxes, TATA box, and coding region, respectively".[2]

The CArG boxes occur between -400 and -200 nts, between the E boxes and the TC elements.[2]

"Functionally important CArG boxes have been identified in transcriptional regulatory elements controlling expression of sets of myogenic contractile and cytoskeletal proteins (reviewed elsewhere8,25). Of note, in cardiac and skeletal muscle cells, functionally important CArG boxes have been identified in transcriptional regulatory element controlling a relatively limited subset of myofibrillar proteins.26"[5]

"In the nucleus, MRTFs physically associate with SRF, facilitating the binding of SRF to single or dual CArG boxes, activating transcription of genes encoding cytoskeletal and myogenic proteins [...].39,40,53,55,56"[5]

"The binding of SRF to SMC CArG boxes is associated with specific alterations in chromatin structure including the methylation and acetylation of histones.76,79"[5]

"Both PDGF-BB and KLF-4 inhibit SRF binding to CArG boxes downregulating transcription of SMC contractile genes.92"[5]

Gene transcriptions

"SMC-restricted binding of SRF to murine SMC gene CArG box chromatin is associated with patterns of posttranslational histone modifications within this chromatin that are specific to the SMC lineage in culture and in vivo, including methylation and acetylation to histone H3 and H4 residues."[2]

"Ca2+􏰀/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements."[6]

"Smooth muscle-specific transcription is controlled by a multitude of transcriptional regulators that cooperate to drive expression in a temporospatial manner. Previous analysis of the cysteine-rich protein 1 (CRP1/Csrp) gene revealed an intronic enhancer that is sufficient for expression in arterial smooth muscle cells and requires a serum response factor-binding CArG element for activity. The presence of a CArG box in smooth muscle regulatory regions is practically invariant; however, it stands to reason that additional elements contribute to the modulation of transcription in concert with the CArG."[6]

A "conserved cAMP response element (CRE) [...] binds the cAMP response element-binding protein (CREB) and is activated by Ca2+􏰀/calmodulin-dependent protein kinase IV (CaMKIV), but not by CaMKII."[6]

"CaMKIV stimulates CRP1 expression not only through the CRE but also through the CArG box."[6]

A "conserved cyclic AMP-response element (CRE) within the CRP1 gene is critical for enhancer activity. The CRE is an 8-bp motif with the consensus sequence TGACGTCA (34). [...] CRE serves as a transcriptional conduit for cyclic AMP-stimulated processes, but it also responds to a variety of other stimuli, including intracellular Ca2+􏰀 through the activation of Ca2+􏰀/calmodulin-dependent protein kinases (30, 31, 49). The primary factors that bind CRE are the cAMP element-binding protein (CREB) and the related proteins activating transcription factor (ATF)-1 and CRE modulator (CREM). The activity of CREB on the CRE is dependent largely on phosphorylation of a Ser133 residue. This phosphorylation event transforms CREB into a potent transcriptional activator and facilitates interactions with additional regulators, namely, CREB-binding protein (CBP) (31, 49). With respect to function, CREB has been implicated in governing a host of cellular processes and adaptive responses, including differentiation, metabolic changes, cell survival, and proliferation (3, 18, 19, 28, 37, 44, 53)."[6]

The "utilization of two conserved binding sites within the CRP1-5.0 enhancer: a newly identified CRE and the CArG box [...] might serve to amplify a response. Given that these two elements are separated by only 14 bp, CREB and SRF could cooperate by assisting in the recruitment of CBP, both of which bind to CBP’s NH2 terminus."[6]

A1BG samplings

Testing the more general 3'-C(C/A/T)(A/T)6(A/G)G-5':

  1. negative strand in the negative direction (from ZSCAN22 to A1BG) is SuccessablesCArG--.bas, looking for 3'-C(C/A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/G)G-5', 0,
  2. negative strand in the positive direction (from ZNF497 to A1BG) is SuccessablesCArG-+.bas, looking for 3'-C(C/A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/G)G-5', 0,
  3. positive strand in the negative direction is SuccessablesCArG+-.bas, looking for 3'-C(C/A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/G)G-5', 2, 3'-CAAAAAAAAG-5', 1399, 3'-CATTAAAAGG-5', 3441,
  4. positive strand in the positive direction is SuccessablesCArG++.bas, looking for 3'-C(C/A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/G)G-5', 0,
  5. complement, negative strand, negative direction is SuccessablesCArGc--.bas, looking for 3'-G(A/G/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(C/T)C-5', 2, 3'-GTTTTTTTTC-5', 1399, 3'-GTAATTTTCC-5', 3441,
  6. complement, negative strand, positive direction is SuccessablesCArGc-+.bas, looking for 3'-G(A/G/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(C/T)C-5', 0,
  7. complement, positive strand, negative direction is SuccessablesCArGc+-.bas, looking for 3'-G(A/G/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(C/T)C-5', 0,
  8. complement, positive strand, positive direction is SuccessablesCArGc++.bas, looking for 3'-G(A/G/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(C/T)C-5', 0,
  9. inverse complement, negative strand, negative direction is SuccessablesCArGci--.bas, looking for 3'-C(C/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/G/T)G-5', 0,
  10. inverse complement, negative strand, positive direction is SuccessablesCArGci-+.bas, looking for 3'-C(C/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/G/T)G-5', 0,
  11. inverse complement, positive strand, negative direction is SuccessablesCArGci+-.bas, looking for 3'-C(C/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/G/T)G-5', 0,
  12. inverse complement, positive strand, positive direction is SuccessablesCArGci++.bas, looking for 3'-C(C/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(A/G/T)G-5', 0,
  13. inverse, negative strand, negative direction, is SuccessablesCArGi--.bas, looking for 3'-G(A/G)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(C/A/T)C-5', 0,
  14. inverse, negative strand, positive direction, is SuccessablesCArGi-+.bas, looking for 3'-G(A/G)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(C/A/T)C-5', 0,
  15. inverse, positive strand, negative direction, is SuccessablesCArGi+-.bas, looking for 3'-G(A/G)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(C/A/T)C-5', 0,
  16. inverse, positive strand, positive direction, is SuccessablesCArGi++.bas, looking for 3'-G(A/G)(A/T)(A/T)(A/T)(A/T)(A/T)(A/T)(C/A/T)C-5', 0.

Actins

"Positively acting, rate-limiting regulatory factors that influence tissue-specific expression of the human cardiac α-actin gene in a mouse muscle cell line are shown by in vivo competition and gel mobility-shift assays to bind to upstream regions of its promoter but to neither vector DNA nor a β-globin promoter. Although the two binding regions are distinctly separated, each corresponds to a cis region required for muscle-specific transcriptional stimulation, and each contains a core CC(A+T-rich)6GG sequence (designated CArG box), which is found in the promoter regions of several muscle-associated genes. Each site has an apparently different binding affinity for trans-acting factors, which may explain the different transcriptional stimulation activities of the two cis regions. [The] two CArG box regions are responsible for muscle-specific transcriptional activity of the cardiac α-actin gene through a mechanism that involves their binding of a positive trans-acting factor in muscle cells."[7]

"SRF binds to an A/T-rich sequence (CCWWWWWWGG) that has been designated as the CArG box.10–12 CArG boxes were originally identified in transcriptional regulatory elements controlling expression of a set of growth- or serum-responsive genes including c-fos and egr-1.13,14 Subsequently, CArG boxes were identified in transcriptional regulatory elements controlling expression of a subset of genes encoding myogenic contractile and cytoskeletal proteins including α-cardiac actin, smooth muscle (SM)-α-actin, α-skeletal actin, and SM22α.15–19"[5]

Early growth responses

"Exposure of human HL-525 cells to x-rays was associated with increases in EGR1 mRNA levels. Nuclear run-on assays showed that this effect is related at least in part to activation of EGR1 gene transcription. Sequences responsive to ionizing radiation-induced signals were determined by deletion analysis of the EGR1 promoter. The results demonstrate that x-ray inducibility of the EGR1 gene is conferred by a region containing six serum response or CC(A+T-rich)6GG (CArG) motifs. Further analysis confirmed that the region encompassing the three distal or upstream CArG elements is functional in the x-ray response. Moreover, this region conferred x-ray inducibility to a minimal thymidine kinase gene promoter. Taken together, these results indicate that ionizing radiation induces EGR1 transcription through CArG elements."[8]

Myocardins

The "promyogenic SRF [SRF GeneID: 6722] coactivator myocardin [MYOCD GeneID: 93649] increased SRF association with methylated histones and CArG box chromatin during activation of SMC gene expression. [...] myocardin/SRF complexes physically interact with H3K4dMe and that the interaction of SRF with CArG box chromatin and H3K4dMe is sensitive to expression levels of myocardin."[2]

Kruppel-like factor 4

The "myogenic repressor Kruppel-like factor 4 recruited histone H4 deacetylase activity to SMC genes and blocked SRF association with methylated histones and CArG box chromatin during repression of SMC gene expression. [...] deacetylation of histone H4 coupled with loss of SRF binding during suppression of SMC differentiation in response to vascular injury. [...] KLF4 can bind to evolutionarily conserved TGF-β [control element] (TCE) DNA sequences adjacent to CArG boxes of SM gene promoters"[2]

Epigenomes

"SMC-selective epigenetic control of SRF binding to chromatin plays a key role in regulation of SMC gene expression in response to pathophysiological stimuli in vivo."[2]

Histone modifications in SMCs include H3K4dMe, H3 Lys79 di-methylation, H3 Lys9 acetylation, H4Ac, and SRF binding.[2]

MADS boxes

"RIN [Ripening Inhibitor] binds to DNA sequences known as the CA/T-rich-G (CArG) box, which is the general target of MADS box proteins (Ito et al., 2008)."[9]

Hypotheses

  1. A1BG is not transcribed using a CArG box.
  2. The lack of a CArG box on either side of A1BG does not prove that it is not actively used to transcribe A1BG.

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

Initial content for this page in some instances came from Wikiversity.

See also

References

  1. 74.100.224.95 (10 January 2010). "Box (disambiguation)". San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-06-15.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Oliver G. McDonald, Brian R. Wamhoff, Mark H. Hoofnagle, and Gary K. Owens (January 4, 2006). "Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo". The Journal of Clinical Investigation. 116 (1): 36–48. Retrieved 2014-06-05.
  3. Shinji Kamada and Takeshi Miwa (1 October 1992). "A protein binding to CArG box motifs and to single-stranded DNA functions as a transcriptional repressor". Gene. 119 (2): 229–236. doi:10.1016/0378-1119(92)90276-U. Retrieved 2017-09-17.
  4. 4.0 4.1 4.2 Weiwei Deng, Hua Ying, Chris A. Helliwell, Jennifer M. Taylor, W. James Peacock, and Elizabeth S. Dennis (19 April 2011). "FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis". Proceedings of the National Academy of Sciences United States of America. 108 (16): 6680–6685. doi:10.1073/pnas.1103175108. Retrieved 2017-09-17.
  5. 5.0 5.1 5.2 5.3 5.4 Michael S. Parmacek (16 March 2007). "Myocardin-Related Transcription Factors : Critical Coactivators Regulating Cardiovascular Development and Adaptation" (PDF). Circulation Research. 100 (5): 633–644. doi:10.1161/01.RES.0000259563.61091.e8. Retrieved 2017-09-19.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 Ida Najwer and Brenda Lilly (25 May 2005). "Ca2+􏰀􏰀/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements" (PDF). American Journal of Physiology-Cell Physiology. 289 (4): C785–C793. doi:10.1152/ajpcell.00098.2005. PMID 15917302. Retrieved 8 December 2019.
  7. Takeshi Miwa, Linda M. Boxer, and Larry Kedes (October 1987). "CArG boxes in the human cardiac α-actin gene are core binding sites for positive trans-acting regulatory factors" (PDF). Proceedings of the National Academy of Sciences USA. 84 (19): 6702–6706. Retrieved 2017-09-18.
  8. Rakesh Datta, Eric Rubin, Vikas Sukhatme, Sajjad Qureshi, Dennis Hallahan, Ralph R. Weichselbaum, and Donald W. Kufe (November 1992). "Ionizing radiation activates transcription of the EGR1 gene via CArG elements" (PDF). Proceedings of the National Academy of Sciences USA. 89 (21): 10149–10153. Retrieved 2017-09-18.
  9. Masaki Fujisawa, Toshitsugu Nakano, Yoko Shima and Yasuhiro Ito (5 February 2013). "A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening". The Plant Cell. 25 (2): 371–86. doi:10.1105/tpc.112.108118. Retrieved 2017-02-19.

External links

Template:Sisterlinks