Maf recognition element gene transcriptions: Difference between revisions

Jump to navigation Jump to search
Marshallsumter (talk | contribs)
mNo edit summary
Marshallsumter (talk | contribs)
Line 51: Line 51:


Copying an apparent consensus sequence for the MARE of TGCTGA or TCAGCA and putting it in "⌘F" finds none located between ZSCAN22 and A1BG but using TCAGCA alone finds five between ZNF497 and A1BG as can be found by the computer programs.
Copying an apparent consensus sequence for the MARE of TGCTGA or TCAGCA and putting it in "⌘F" finds none located between ZSCAN22 and A1BG but using TCAGCA alone finds five between ZNF497 and A1BG as can be found by the computer programs.
For the Basic programs testing consensus sequence AAAAAAAA (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
# negative strand, negative direction, looking for AAAAAAAA, 0.
# positive strand, negative direction, looking for AAAAAAAA, 0.
# positive strand, positive direction, looking for AAAAAAAA, 0.
# negative strand, positive direction, looking for AAAAAAAA, 0.
# complement, negative strand, negative direction, looking for TTTTTTTT, 0.
# complement, positive strand, negative direction, looking for TTTTTTTT, 0.
# complement, positive strand, positive direction, looking for TTTTTTTT, 0.
# complement, negative strand, positive direction, looking for TTTTTTTT, 0.
# inverse complement, negative strand, negative direction, looking for TTTTTTTT, 0.
# inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
# inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
# inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
# inverse negative strand, negative direction, looking for AAAAAAAA, 0.
# inverse positive strand, negative direction, looking for AAAAAAAA, 0.
# inverse positive strand, positive direction, looking for AAAAAAAA, 0.
# inverse negative strand, positive direction, looking for AAAAAAAA, 0.
===AAA UTR gene transcriptions===
{{main|UTR promoter gene transcriptions}}
===AAA core promoters===
{{main|Core promoter gene transcriptions}}
===AAA proximal promoters===
{{main|Proximal promoter gene transcriptions}}
===AAA distal promoters===
{{main|Distal promoter gene transcriptions}}


==See also==
==See also==

Revision as of 00:14, 3 February 2021

Associate Editor(s)-in-Chief: Henry A. Hoff

Large "and small [musculoaponeurotic fibrosarcoma] Maf proteins are able to form homodimers that recognize the Maf recognition element (MARE)."[1]

bZIP Maf is a domain found in Maf transcription factor proteins that contains a leucine zipper (bZIP) domain, which mediates the transcription factor's dimerization and DNA binding properties with DNA motifs termed the Maf recognition elements (MAREs) that are 13 or 14 base pairs long such that the two residues at the beginning of helix H2 are positioned to recognize the flanking region of the DNA.[2]

Human genes

Interactions

Consensus sequences

"Maf factors recognize relatively long palindromic DNA sequences, TGCTGA(G/C)TCAGCA and TGCTGA(GC/CG)TCAGCA, which are now known as Maf recognition elements (MAREs)."[3]

Samplings

Copying an apparent consensus sequence for the MARE of TGCTGA or TCAGCA and putting it in "⌘F" finds none located between ZSCAN22 and A1BG but using TCAGCA alone finds five between ZNF497 and A1BG as can be found by the computer programs.

For the Basic programs testing consensus sequence AAAAAAAA (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:

  1. negative strand, negative direction, looking for AAAAAAAA, 0.
  2. positive strand, negative direction, looking for AAAAAAAA, 0.
  3. positive strand, positive direction, looking for AAAAAAAA, 0.
  4. negative strand, positive direction, looking for AAAAAAAA, 0.
  5. complement, negative strand, negative direction, looking for TTTTTTTT, 0.
  6. complement, positive strand, negative direction, looking for TTTTTTTT, 0.
  7. complement, positive strand, positive direction, looking for TTTTTTTT, 0.
  8. complement, negative strand, positive direction, looking for TTTTTTTT, 0.
  9. inverse complement, negative strand, negative direction, looking for TTTTTTTT, 0.
  10. inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
  11. inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
  12. inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
  13. inverse negative strand, negative direction, looking for AAAAAAAA, 0.
  14. inverse positive strand, negative direction, looking for AAAAAAAA, 0.
  15. inverse positive strand, positive direction, looking for AAAAAAAA, 0.
  16. inverse negative strand, positive direction, looking for AAAAAAAA, 0.

AAA UTR gene transcriptions

AAA core promoters

AAA proximal promoters

AAA distal promoters

See also

References

  1. Akihito Otsuki, Mikiko Suzuki, Fumiki Katsuoka, Kouhei Tsuchida, Hiromi Suda, Masanobu Morita, Ritsuko Shimizu, Masayuki Yamamoto (February 2016). "Unique cistrome defined as CsMBE is strictly required for Nrf2-sMaf heterodimer function in cytoprotection". Free Radical Biology and Medicine. 91: 45–57. doi:10.1016/j.freeradbiomed.2015.12.005. PMID 26677805. Retrieved 21 August 2020.
  2. Kusunoki H, Motohashi H, Katsuoka F, Morohashi A, Yamamoto M, Tanaka T (April 2002). "Solution structure of the DNA-binding domain of MafG". Nat. Struct. Biol. 9 (4): 252–6. doi:10.1038/nsb771. PMID 11875518.
  3. Motoki Kyo, Tae Yamamoto, Hozumi Motohashi, Terue Kamiya, Toshihiro Kuroita, Toshiyuki Tanaka, James Douglas Engel, Bunsei Kawakami, Masayuki Yamamoto (13 February 2004). "Evaluation of MafG interaction with Maf recognition element arrays by surface plasmon resonance imaging technique". Genes to Cells. 9 (2). doi:10.1111/j.1356-9597.2004.00711.x. Retrieved 8 September 2020.

External links