Homeobox gene transcriptions
Associate Editor(s)-in-Chief: Henry A. Hoff
"Transcription factors Pax-4 and Pax-6 are known to be key regulators of pancreatic cell differentiation and development. [...] The gene-targeting experiments revealed that Pax-4 and Pax-6 cannot substitute for each other in tissue with overlapping expression of both genes. [The] DNA-binding specificities of Pax-4 and Pax-6 are similar. The Pax-4 homeodomain [HD] was shown to preferentially dimerize on DNA sequences consisting of an inverted TAAT motif, separated by 4-nucleotide spacing."[1]
The "crucial difference between the binding sites of Antennapedia class and TTF-1 HDs is in the motifs 5'-TAAT-3', recognized by Antennapedia [a Hox gene, a subset of homeobox genes, first discovered in Drosophila which controls the formation of legs during development], and 5'-CAAG-3', preferentially bound by TTF-1. [The] binding of wild type and mutants TTF-1 HD to oligonucleotides containing either 5'-TAAT-3' or 5'-CAAG-3' indicate that only in the presence of the latter motif the Gln50 in TTF-1 HD is utilized for DNA recognition."[2]
Human genes
Interactions
Consensus sequences
An apparent consensus sequence is 5'-CAAG-3'.[2]
Hypotheses
- A1BG has no homeoboxes in either promoter.
- A1BG is not transcribed by a homeobox.
- No homeobox participates in the transcription of A1BG.
Samplings
Copying a portion of the homeobox motif of CAAG and putting it in "⌘F" finds eight located between ZSCAN22 and A1BG and 21 between ZNF497 and A1BG as can be found by the computer programs.
For the Basic programs testing consensus sequence AAAAAAAA (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
- negative strand, negative direction, looking for AAAAAAAA, 0.
- negative strand, positive direction, looking for AAAAAAAA, 0.
- positive strand, negative direction, looking for AAAAAAAA, 0.
- positive strand, positive direction, looking for AAAAAAAA, 0.
- complement, negative strand, negative direction, looking for TTTTTTTT, 0.
- complement, negative strand, positive direction, looking for TTTTTTTT, 0.
- complement, positive strand, negative direction, looking for TTTTTTTT, 0.
- complement, positive strand, positive direction, looking for TTTTTTTT, 0.
- inverse complement, negative strand, negative direction, looking for TTTTTTTT, 0.
- inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
- inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
- inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
- inverse negative strand, negative direction, looking for AAAAAAAA, 0.
- inverse negative strand, positive direction, looking for AAAAAAAA, 0.
- inverse positive strand, negative direction, looking for AAAAAAAA, 0.
- inverse positive strand, positive direction, looking for AAAAAAAA, 0.
AAA core promoters
AAA proximal promoters
AAA distal promoters
Acknowledgements
The content on this page was first contributed by: Henry A. Hoff.
See also
References
- ↑ Anna Kalousová, Vladimı́r Beneš, Jan Pačes, Václav Pačes and Zbyněk Kozmik (June 1999). "DNA Binding and Transactivating Properties of the Paired and Homeobox Protein Pax4". Biochemical and Biophysical Research Communications. 259 (3): 510–518. PMID 10364449. Retrieved 6 May 2020.
- ↑ 2.0 2.1 G. Damante, D. Fabbro, L. Pelizari, D. Civitareale, S. Guazzi, M. Polycarpou-Schwartz, S. Cauci, F. Quadrifoglio, S. Formisano and R. Di Lauro (20 June 1994). "Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain" (PDF). Nucleic Acids Research. 22 (15): 3075–83. doi:10.1093/nar/22.15.3075. PMID 7915030. Retrieved 6 May 2020.