Estrogen response element gene transcriptions
Associate Editor(s)-in-Chief: Henry A. Hoff
Human genes
Consensus sequences
"The [...] estrogen response element (ERE) [was] located on [...] −94 to −80 "AGGTTATTGCCTCCT" on the transcript, respectively."[1]
Note: GGTTA is the complement of CCAAT. AGGTTATTGCCTCCT is the complement of TCCAATAACGGAGGA.
"Our in silico analysis revealed a putative ERE sequence (GGTCAggaTGACA; wherein the non-consensus nucleotide A is underlined) starting at position −242 from the translation initiation codon (ATG, A being +1; [...])."[2]
"The estrogen receptor (ER)1 is a transcription factor that regulates the expression of estrogen-responsive genes by binding to a specific DNA sequence found in their regulatory regions. This sequence is called the estrogen response element (ERE). [...] The essential ERE was determined to have the consensus sequence 5′-GGTCAnnnTGACC-3′ (4, 7)."[3]
The "sequence requirements for a “minimal” consensus ERE [...] for ER binding encompasses a wide variety of possible combinations, which display stable ER binding. The optimal binding sequence is 5′-C(A/G)GGTCAnnnTGACC(T/C)G-3′. Any change from this optimal consensus diminishes ER-ERE affinity. The underlined core consensus sequence represents the minimum length for binding activity."[3]
ERE (Matsumoto) samplings
Copying an abridged consensus sequence for the estrogen response element of AGGTTA and putting it in "⌘F" finds none located between ZSCAN22 and A1BG and none between ZNF497 and A1BG as can be found by the computer programs.
Copying an abridged consensus sequence for the estrogen response element of GGTCAGGAT and putting it in "⌘F" finds none located between ZSCAN22 and A1BG and none between ZNF497 and A1BG as can be found by the computer programs.
For the Basic programs testing consensus sequence 5'-AGGTTATTGCCTCCT-3' (starting with SuccessablesERE.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
- negative strand, negative direction, looking for 5'-AGGTTATTGCCTCCT-3', 0.
- negative strand, positive direction, looking for 5'-AGGTTATTGCCTCCT-3', 0.
- positive strand, negative direction, looking for 5'-AGGTTATTGCCTCCT-3', 0.
- positive strand, positive direction, looking for 5'-AGGTTATTGCCTCCT-3', 0.
- complement, negative strand, negative direction, looking for 5'-TCCAATAACGGAGGA-3', 0.
- complement, negative strand, positive direction, looking for 5'-TCCAATAACGGAGGA-3', 0.
- complement, positive strand, negative direction, looking for 5'-TCCAATAACGGAGGA-3', 0.
- complement, positive strand, positive direction, looking for 5'-TCCAATAACGGAGGA-3', 0.
- inverse complement, negative strand, negative direction, looking for 5'-AGGAGGCAATAACCT-3', 0.
- inverse complement, negative strand, positive direction, looking for 5'-AGGAGGCAATAACCT-3', 0.
- inverse complement, positive strand, negative direction, looking for 5'-AGGAGGCAATAACCT-3', 0.
- inverse complement, positive strand, positive direction, looking for 5'-AGGAGGCAATAACCT-3', 0.
- inverse negative strand, negative direction, looking for 5'-TCCTCCGTTATTGGA-3', 0.
- inverse negative strand, positive direction, looking for 5'-TCCTCCGTTATTGGA-3', 0.
- inverse positive strand, negative direction, looking for 5'-TCCTCCGTTATTGGA-3', 0.
- inverse positive strand, positive direction, looking for 5'-TCCTCCGTTATTGGA-3', 0.
ERE (Yasar) samplings
For the Basic programs testing consensus sequence 5'-GGTCAGGATGAC-3' (starting with SuccessablesERE2.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
- negative strand, negative direction, looking for 5'-GGTCAGGATGAC-3', 0.
- negative strand, positive direction, looking for 5'-GGTCAGGATGAC-3', 0.
- positive strand, negative direction, looking for 5'-GGTCAGGATGAC-3', 0.
- positive strand, positive direction, looking for 5'-GGTCAGGATGAC-3', 0.
- complement, negative strand, negative direction, looking for 5'-CCAGTCCTACTG-3', 0.
- complement, negative strand, positive direction, looking for 5'-CCAGTCCTACTG-3', 0.
- complement, positive strand, negative direction, looking for 5'-CCAGTCCTACTG-3', 0.
- complement, positive strand, positive direction, looking for 5'-CCAGTCCTACTG-3', 0.
- inverse complement, negative strand, negative direction, looking for 5'-GTCATCCTGACC-3', 0.
- inverse complement, negative strand, positive direction, looking for 5'-GTCATCCTGACC-3', 0.
- inverse complement, positive strand, negative direction, looking for 5'-GTCATCCTGACC-3', 0.
- inverse complement, positive strand, positive direction, looking for 5'-GTCATCCTGACC-3', 0.
- inverse negative strand, negative direction, looking for 5'-CAGTAGGACTGG-3', 0.
- inverse negative strand, positive direction, looking for 5'-CAGTAGGACTGG-3', 0.
- inverse positive strand, negative direction, looking for 5'-CAGTAGGACTGG-3', 0.
- inverse positive strand, positive direction, looking for 5'-CAGTAGGACTGG-3', 0.
ERE1 (Driscoll) samplings
Copying a responsive elements consensus sequence GGTCA and putting the sequence in "⌘F" finds none between ZNF497 and A1BG or none between ZSCAN22 and A1BG as can be found by the computer programs.
For the Basic programs testing consensus sequence AAAAAAAA (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
- negative strand, negative direction, looking for AAAAAAAA, 0.
- positive strand, negative direction, looking for AAAAAAAA, 0.
- negative strand, positive direction, looking for AAAAAAAA, 0.
- positive strand, positive direction, looking for AAAAAAAA, 0.
- inverse complement, negative strand, negative direction, looking for TTTTTTTT, 0.
- inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
- inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
- inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
AAA (4560-2846) UTRs
AAA negative direction (2846-2811) core promoters
AAA positive direction (4445-4265) core promoters
AAA negative direction (2811-2596) proximal promoters
AAA positive direction (4265-4050) proximal promoters
AAA negative direction (2596-1) distal promoters
AAA positive direction (4050-1) distal promoters
ERE1 (Driscoll) random dataset samplings
- RDr0: 0.
- RDr1: 0.
- RDr2: 0.
- RDr3: 0.
- RDr4: 0.
- RDr5: 0.
- RDr6: 0.
- RDr7: 0.
- RDr8: 0.
- RDr9: 0.
- RDr0ci: 0.
- RDr1ci: 0.
- RDr2ci: 0.
- RDr3ci: 0.
- RDr4ci: 0.
- RDr5ci: 0.
- RDr6ci: 0.
- RDr7ci: 0.
- RDr8ci: 0.
- RDr9ci: 0.
RDr arbitrary (evens) (4560-2846) UTRs
RDr alternate (odds) (4560-2846) UTRs
RDr arbitrary negative direction (evens) (2846-2811) core promoters
RDr alternate negative direction (odds) (2846-2811) core promoters
RDr arbitrary positive direction (odds) (4445-4265) core promoters
RDr alternate positive direction (evens) (4445-4265) core promoters
RDr arbitrary negative direction (evens) (2811-2596) proximal promoters
RDr alternate negative direction (odds) (2811-2596) proximal promoters
RDr arbitrary positive direction (odds) (4265-4050) proximal promoters
RDr alternate positive direction (evens) (4265-4050) proximal promoters
RDr arbitrary negative direction (evens) (2596-1) distal promoters
RDr alternate negative direction (odds) (2596-1) distal promoters
RDr arbitrary positive direction (odds) (4050-1) distal promoters
RDr alternate positive direction (evens) (4050-1) distal promoters
ERE1 (Driscoll) analysis and results
"The underlined core consensus sequence [GGTCA] represents the minimum length for binding activity."[3]
Reals or randoms | Promoters | direction | Numbers | Strands | Occurrences | Averages (± 0.1) |
---|---|---|---|---|---|---|
Reals | UTR | negative | 0 | 2 | 0 | 0 |
Randoms | UTR | arbitrary negative | 0 | 10 | 0 | 0 |
Randoms | UTR | alternate negative | 0 | 10 | 0 | 0 |
Reals | Core | negative | 0 | 2 | 0 | 0 |
Randoms | Core | arbitrary negative | 0 | 10 | 0 | 0 |
Randoms | Core | alternate negative | 0 | 10 | 0 | 0 |
Reals | Core | positive | 0 | 2 | 0 | 0 |
Randoms | Core | arbitrary positive | 0 | 10 | 0 | 0 |
Randoms | Core | alternate positive | 0 | 10 | 0 | 0 |
Reals | Proximal | negative | 0 | 2 | 0 | 0 |
Randoms | Proximal | arbitrary negative | 0 | 10 | 0 | 0 |
Randoms | Proximal | alternate negative | 0 | 10 | 0 | 0 |
Reals | Proximal | positive | 0 | 2 | 0 | 0 |
Randoms | Proximal | arbitrary positive | 0 | 10 | 0 | 0 |
Randoms | Proximal | alternate positive | 0 | 10 | 0 | 0 |
Reals | Distal | negative | 0 | 2 | 0 | 0 |
Randoms | Distal | arbitrary negative | 0 | 10 | 0 | 0 |
Randoms | Distal | alternate negative | 0 | 10 | 0 | 0 |
Reals | Distal | positive | 0 | 2 | 0 | 0 |
Randoms | Distal | arbitrary positive | 0 | 10 | 0 | 0 |
Randoms | Distal | alternate positive | 0 | 10 | 0 | 0 |
Comparison:
The occurrences of real ERE1s are greater than the randoms. This suggests that the real ERE1s are likely active or activable.
ERE2 (Driscoll) samplings
Copying a responsive elements consensus sequence TGACC and putting the sequence in "⌘F" finds none between ZNF497 and A1BG or none between ZSCAN22 and A1BG as can be found by the computer programs.
For the Basic programs testing consensus sequence AAAAAAAA (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
- negative strand, negative direction, looking for AAAAAAAA, 0.
- positive strand, negative direction, looking for AAAAAAAA, 0.
- negative strand, positive direction, looking for AAAAAAAA, 0.
- positive strand, positive direction, looking for AAAAAAAA, 0.
- inverse complement, negative strand, negative direction, looking for TTTTTTTT, 0.
- inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
- inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
- inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
AAA (4560-2846) UTRs
AAA negative direction (2846-2811) core promoters
AAA positive direction (4445-4265) core promoters
AAA negative direction (2811-2596) proximal promoters
AAA positive direction (4265-4050) proximal promoters
AAA negative direction (2596-1) distal promoters
AAA positive direction (4050-1) distal promoters
ERE2 (Driscoll) random dataset samplings
- RDr0: 0.
- RDr1: 0.
- RDr2: 0.
- RDr3: 0.
- RDr4: 0.
- RDr5: 0.
- RDr6: 0.
- RDr7: 0.
- RDr8: 0.
- RDr9: 0.
- RDr0ci: 0.
- RDr1ci: 0.
- RDr2ci: 0.
- RDr3ci: 0.
- RDr4ci: 0.
- RDr5ci: 0.
- RDr6ci: 0.
- RDr7ci: 0.
- RDr8ci: 0.
- RDr9ci: 0.
RDr arbitrary (evens) (4560-2846) UTRs
RDr alternate (odds) (4560-2846) UTRs
RDr arbitrary negative direction (evens) (2846-2811) core promoters
RDr alternate negative direction (odds) (2846-2811) core promoters
RDr arbitrary positive direction (odds) (4445-4265) core promoters
RDr alternate positive direction (evens) (4445-4265) core promoters
RDr arbitrary negative direction (evens) (2811-2596) proximal promoters
RDr alternate negative direction (odds) (2811-2596) proximal promoters
RDr arbitrary positive direction (odds) (4265-4050) proximal promoters
RDr alternate positive direction (evens) (4265-4050) proximal promoters
RDr arbitrary negative direction (evens) (2596-1) distal promoters
RDr alternate negative direction (odds) (2596-1) distal promoters
RDr arbitrary positive direction (odds) (4050-1) distal promoters
RDr alternate positive direction (evens) (4050-1) distal promoters
ERE2 (Driscoll) analysis and results
"The underlined core consensus sequence [TGACC] represents the minimum length for binding activity."[3]
Reals or randoms | Promoters | direction | Numbers | Strands | Occurrences | Averages (± 0.1) |
---|---|---|---|---|---|---|
Reals | UTR | negative | 0 | 2 | 0 | 0 |
Randoms | UTR | arbitrary negative | 0 | 10 | 0 | 0 |
Randoms | UTR | alternate negative | 0 | 10 | 0 | 0 |
Reals | Core | negative | 0 | 2 | 0 | 0 |
Randoms | Core | arbitrary negative | 0 | 10 | 0 | 0 |
Randoms | Core | alternate negative | 0 | 10 | 0 | 0 |
Reals | Core | positive | 0 | 2 | 0 | 0 |
Randoms | Core | arbitrary positive | 0 | 10 | 0 | 0 |
Randoms | Core | alternate positive | 0 | 10 | 0 | 0 |
Reals | Proximal | negative | 0 | 2 | 0 | 0 |
Randoms | Proximal | arbitrary negative | 0 | 10 | 0 | 0 |
Randoms | Proximal | alternate negative | 0 | 10 | 0 | 0 |
Reals | Proximal | positive | 0 | 2 | 0 | 0 |
Randoms | Proximal | arbitrary positive | 0 | 10 | 0 | 0 |
Randoms | Proximal | alternate positive | 0 | 10 | 0 | 0 |
Reals | Distal | negative | 0 | 2 | 0 | 0 |
Randoms | Distal | arbitrary negative | 0 | 10 | 0 | 0 |
Randoms | Distal | alternate negative | 0 | 10 | 0 | 0 |
Reals | Distal | positive | 0 | 2 | 0 | 0 |
Randoms | Distal | arbitrary positive | 0 | 10 | 0 | 0 |
Randoms | Distal | alternate positive | 0 | 10 | 0 | 0 |
Comparison:
The occurrences of real ERE2s are greater than the randoms. This suggests that the real ERE2s are likely active or activable.
See also
References
- ↑ Takuya Matsumoto, Saemi Kitajima, Chisato Yamamoto, Mitsuru Aoyagi, Yoshiharu Mitoma, Hiroyuki Harada and Yuji Nagashima (9 August 2020). "Cloning and tissue distribution of the ATP-binding cassette subfamily G member 2 gene in the marine pufferfish Takifugu rubripes" (PDF). Fisheries Science. 86: 873–887. doi:10.1007/s12562-020-01451-z. Retrieved 27 September 2020.
- ↑ Pelin Yaşar, Gamze Ayaz & Mesut Muyan (25 November 2016). "Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway". Scientific Reports. 6: 37808. doi:10.1038/srep37808. Retrieved 6 October 2020.
- ↑ 3.0 3.1 3.2 3.3 Mark D. Driscoll, G. Sathya, Mesut Muyan, Carolyn M. Klinge, Russell Hilf and Robert A. Bambara (November 1998). "Sequence Requirements for Estrogen Receptor Binding to Estrogen Response Elements". Journal of Biological Chemistry Nucleic Acids, Protein Synthesis, and Molecular Genetics. 273 (45): 29321–29330. doi:10.1074/jbc.273.45.29321. Retrieved 8 March 2023.