Vitamin D response element gene transcriptions
Associate Editor(s)-in-Chief: Henry A. Hoff
Vitamin D response elements (VDRE) typically consist of two conserved hexameric half-sites separated by a three nucleotide spacer, referred to as a DR3 type element.[1] Although it is known that the sequence of a VDRE can have a strong influence on the degree of protein binding, particularly at the fifth position in the half-site,[2] previous studies have focused on synthetic variations of response elements and not naturally occurring sequences.[3]
The VDR is widely distributed in tissues, and is not restricted to those tissues considered the classic targets of vitamin D. The VDR upon binding to 1,25(OH)2D heterodimerizes with other nuclear hormone receptors, in particular the family of retinoid X receptors. This complex then binds to special DNA sequences called vitamin D response elements (VDRE) in the promoters of genes which it regulates. A variety of additional proteins called coactivators complex with the activated VDR/RXR heterodimers either to form a bridge from the VDR/RXR complex binding to the VDRE to the proteins responsible for transcription such as RNA polymerase II binding to the transcription start site or to help unravel the chromatin at the site of the gene via recruitment of histone acetyl transferases (HAT), allowing transcription to proceed.[4]
Human genes
Consensus sequences
"The following VDRE oligonucleotides were used: mouse osteopontin, 5′-GCTCGGGTAGGGTTCACGAGGTTCACTCGACTCG-3′; DR3, 5′-GCTCGGGTAGAGGTCAAGGAGGTCACTCGACTCG-3′; DR3′, 5′-GCTCGGGTAGAGTTCAAGGAGTTCACTCGACTCG-3′; human osteocalcin, 5′-GCTCGGGTAGGGGTGACTCACCGGGTGAACGGGGGCATCTCGACTCG-3′; and Random, 5′-GCTCGGGTAGCTAATCCGTTTCGAGCTCGACTCG-3′."[5] Likely general consensus sequence for the VDRE: (A/G)G(G/T)(G/T)CA.[5]
Samplings
Copying the consensus of the VDRE: 3'-AGGTCA-5' and putting the sequence in "⌘F" finds no locations for this sequence between ZSCAN22 and A1BG but there three between ZNF497 and A1BG as can be found by the computer programs.
See also
References
- ↑ Roff A, Wilson RT (March 2009). "A Novel SNP in a Vitamin D Response Element of the CYP24A1 Promoter Reduces Protein Binding, Transactivation, and Gene Expression". Journal of Steroid Biochem Mol Biol. 112 (1–3): 47–54. doi:10.1016/j.jsbmb.2008.08.009. PMC 2749287. PMID 18824104.
- ↑ Jin CH, Pike JW (1996). "Human vitamin D receptor-dependent transactivation in Saccharomyces cerevisiae requires retinoid X receptor". Mol. Endocrinol. 10 (2): 196–205. doi:10.1210/mend.10.2.8825559. PMID 8825559.
- ↑ Umesono K, Murakami KK, Thompson CC, Evans RM (28 June 1991). "HDirect repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors". Cell. 65 (7): 1255–66. doi:10.1016/0092-8674(91)90020-Y. PMC 6159884. PMID 1648450.
- ↑ Daniel Bikle (2014). Kenneth R Feingold, Bradley Anawalt, Alison Boyce, George Chrousos, Wouter W de Herder, Kathleen Dungan, Ashley Grossman, Jerome M Hershman, Hans J Hofland, Gregory Kaltsas, Christian Koch, Peter Kopp, Márta Korbonits, Robert McLachlan, John E Morley, Maria New, Jonathan Purnell, Frederick Singer, Constantine A Stratakis, Dace L Trence, Don P Wilson, ed. Vitamin D: Production, Metabolism, and Mechanisms of Action, In: Endotext. South Dartmouth (MA): MDText.com, Inc. PMID 25905172.
- ↑ 5.0 5.1 Theodore A. Craig, Timothy D. Veenstra, Stephen Naylor, Andy J. Tomlinson, Kenneth L. Johnson, Slobodan Macura, Nenad Juranić, and Rajiv Kumar (26 August 1997). "Zinc Binding Properties of the DNA Binding Domain of the 1,25-Dihydroxyvitamin D3 Receptor". Biochemistry. 36 (34): 10482–10491. doi:10.1021/bi970561b. PMID 9265628. Retrieved 4 September 2020.