GLM box gene transcriptions
Editor-In-Chief: Henry A. Hoff
"The primary structure of hordein [barley prolamins] polypeptides is closely related to that of prolamins from other grass species from the Pooideae subfamily, such as wheat and rye (Shewry & Tatham 1990;Shewry et al. 1995). The close evolutionary relationship is also manifested by the conservation of a putative regulatory element in their gene promoters, the endosperm box (Forde et al. 1985;Kreis et al. 1985). This conserved region consists of two motifs, a 7 bp element (5′TGTAAAG3′) termed the Prolamin Box (P-box) or endosperm motif (EM) followed at a distance of up to 8 nucleotides by the GCN4-like motif (GLM) which has the 5′(G/A)TGA(G/C)TCA(T/C)3′ consensus sequence (reviewed by Müller et al. 1995)."[1]
Consensus sequences
The "GCN4-like motif (GLM) [...] has the 5′(G/A)TGA(G/C)TCA(T/C)3′ consensus sequence (reviewed by Müller et al. 1995)."[1]
GLM box sampling of A1BG promoters
For the Basic programs (starting with SuccessablesGLM.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), including extending the number of nts from 958 to 4445, the programs are, are looking for, and found:
- negative strand in the negative direction (from ZSCAN22 to A1BG) is SuccessablesGLM--.bas, looking for 3'-(G/A)TGA(G/C)TCA(T/C)-5', 0,
- negative strand in the positive direction (from ZNF497 to A1BG) is SuccessablesGLM-+.bas, looking for 3'-(G/A)TGA(G/C)TCA(T/C)-5', 0,
- positive strand in the negative direction is SuccessablesGLM+-.bas, looking for 3'-(G/A)TGA(G/C)TCA(T/C)-5', 0,
- positive strand in the positive direction is SuccessablesGLM++.bas, looking for 3'-(G/A)TGA(G/C)TCA(T/C)-5', 0,
- complement, negative strand, negative direction is SuccessablesGLMc--.bas, looking for 3'-(C/T)ACT(G/C)AGT(A/G)-5', 0,
- complement, negative strand, positive direction is SuccessablesGLMc-+.bas, looking for 3'-(C/T)ACT(G/C)AGT(A/G)-5', 0,
- complement, positive strand, negative direction is SuccessablesGLMc+-.bas, looking for 3'-(C/T)ACT(G/C)AGT(A/G)-5', 0,
- complement, positive strand, positive direction is SuccessablesGLMc++.bas, looking for 3'-(C/T)ACT(G/C)AGT(A/G)-5', 0,
- inverse complement, negative strand, negative direction is SuccessablesGLMci--.bas, looking for 3'-(A/G)TGA(G/C)TCA(C/T)-5', 0,
- inverse complement, negative strand, positive direction is SuccessablesGLMci-+.bas, looking for 3'-(A/G)TGA(G/C)TCA(C/T)-5', 0,
- inverse complement, positive strand, negative direction is SuccessablesGLMci+-.bas, looking for 3'-(A/G)TGA(G/C)TCA(C/T)-5', 0,
- inverse complement, positive strand, positive direction is SuccessablesGLMci++.bas, looking for 3'-(A/G)TGA(G/C)TCA(C/T)-5', 0,
- inverse, negative strand, negative direction, is SuccessablesGLMi--.bas, looking for 3'-(T/C)ACT(G/C)AGT(G/A)-5', 0,
- inverse, negative strand, positive direction, is SuccessablesGLMi-+.bas, looking for 3'-(T/C)ACT(G/C)AGT(G/A)-5', 0,
- inverse, positive strand, negative direction, is SuccessablesGLMi+-.bas, looking for 3'-(T/C)ACT(G/C)AGT(G/A)-5', 0,
- inverse, positive strand, positive direction, is SuccessablesGLMi++.bas, looking for 3'-(T/C)ACT(G/C)AGT(G/A)-5', 0.
GCN4 motifs
Most bZIP proteins show high binding affinity for the ACGT motifs, which include [...] a GCN4 motif, namely TGA(G/C)TCA.[2][3][4]
Acknowledgements
The content on this page was first contributed by: Henry A. Hoff.
Initial content for this page in some instances came from Wikiversity.
See also
References
- ↑ 1.0 1.1 Montaña Mena, Jesus Vicente-Carbajosa, Robert J. Schmidt and Pilar Carbonero (1998). "An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm". The Plant Journal. 16 (1): 53–62. doi:10.1046/j.1365-313x.1998.00275.x. Retrieved 2017-02-19. Unknown parameter
|month=
ignored (help) - ↑ Landschulz WH, Johnson PF, McKnight SL (June 1988). "The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins". Science. 240 (4860): 1759–64. Bibcode:1988Sci...240.1759L. doi:10.1126/science.3289117. PMID 3289117.
- ↑ E ZG, Zhang YP, Zhou JH, Wang L (April 2014). "Mini review roles of the bZIP gene family in rice". Genetics and Molecular Research. 13 (2): 3025–36. doi:10.4238/2014.April.16.11. PMID 24782137.
- ↑ Nijhawan A, Jain M, Tyagi AK, Khurana JP (February 2008). "Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice". Plant Physiology. 146 (2): 333–50. doi:10.1104/pp.107.112821. PMC 2245831. PMID 18065552.