Androgen response element gene transcriptions

Revision as of 03:30, 2 November 2020 by Marshallsumter (talk | contribs) (Created page with "{{AE}} Henry A. Hoff "Androgen receptors (ARs) (NR3C4; nuclear receptor subfamily 3,group C, member 4) have a crucial role in the development,function and homeostasis of PCa...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Associate Editor(s)-in-Chief: Henry A. Hoff

"Androgen receptors (ARs) (NR3C4; nuclear receptor subfamily 3,group C, member 4) have a crucial role in the development,function and homeostasis of PCa cells. ARs can be activated as atranscription factor via binding to androgen hormones (eithertestosterone or dihydrotestosterone). This receptor has two mainfunctional domains: ligand-binding and DNA-binding (DBD).8"[1]

"Androgen response elements structurally consist of a short DNAmotif with base sequence specificity within the promoterupstream of the androgen-responsive genes. The HRE contains apair of conserved sequences, which are separated by a three-nucleotide spacer. This sequence is determined as 5'-GGTACAnnnTGTTCT-3'10, 11 with 5'-CGG-3' as the spacer in the androgen response element."[1]

"The androgen response element sequence, 5'-GGTACACGGTGTTCT-3', was obtained from the National Center of Biotechnology Information (NCBI)."[1]

Human genes

Gene ID: 367 is AR androgen receptor aka NR3C4 on Xq12: "The androgen receptor gene is more than 90 kb long and codes for a protein that has 3 major functional domains: the N-terminal domain, DNA-binding domain, and androgen-binding domain. The protein functions as a steroid-hormone activated transcription factor. Upon binding the hormone ligand, the receptor dissociates from accessory proteins, translocates into the nucleus, dimerizes, and then stimulates transcription of androgen responsive genes. This gene contains 2 polymorphic trinucleotide repeat segments that encode polyglutamine and polyglycine tracts in the N-terminal transactivation domain of its protein. Expansion of the polyglutamine tract from the normal 9-34 repeats to the pathogenic 38-62 repeats causes spinal bulbar muscular atrophy (SBMA, also known as Kennedy's disease). Mutations in this gene are also associated with complete androgen insensitivity (CAIS). Alternative splicing results in multiple transcript variants encoding different isoforms."[2]

Gene expressions

"Biased expression in liver (RPKM 12.9), endometrium (RPKM 10.8) and 13 other tissues."[2]

Consensus sequences

5′-GGTACACGGTGTTCT-3′[1]

5'-(A/T)(A/G)(A/C/G)(C/T)(C/G/T)(A/C/G)(C/G)(A/C/T)(A/C/G)(A/T)G(A/G/T)(A/G)(C/G)(A/C/T)-3'[3]

Hypotheses

  1. A1BG has no A boxes in either promoter.
  2. A1BG is not transcribed by an ATA box.
  3. AGCE1 does not participate in the transcription of A1BG.

Androgen response element (Kouhpayeh) samplings

Copying a responsive elements consensus sequence 5'-GGTACA-3' and putting the sequence in "⌘F" finds none between ZNF497 and A1BG or none between ZSCAN22 and A1BG as can be found by the computer programs.

For the Basic programs testing consensus sequence 5'-AAAAAAAA-3' (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:

  1. negative strand, negative direction, looking for 5'-AAAAAAAA-3', 0.
  2. negative strand, positive direction, looking for 5'-AAAAAAAA-3', 0.
  3. positive strand, negative direction, looking for 5'-AAAAAAAA-3', 0.
  4. positive strand, positive direction, looking for 5'-AAAAAAAA-3', 0.
  5. complement, negative strand, negative direction, looking for 5'-TTTTTTTT-3', 0.
  6. complement, negative strand, positive direction, looking for 5'-TTTTTTTT-3', 0.
  7. complement, positive strand, negative direction, looking for 5'-TTTTTTTT-3', 0.
  8. complement, positive strand, positive direction, looking for 5'-TTTTTTTT-3', 0.
  9. inverse complement, negative strand, negative direction, looking for 5'-TTTTTTTT-3', 0.
  10. inverse complement, negative strand, positive direction, looking for 5'-TTTTTTTT-3', 0.
  11. inverse complement, positive strand, negative direction, looking for 5'-TTTTTTTT-3', 0.
  12. inverse complement, positive strand, positive direction, looking for 5'-TTTTTTTT-3', 0.
  13. inverse negative strand, negative direction, looking for 5'-AAAAAAAA-3', 0.
  14. inverse negative strand, positive direction, looking for 5'-AAAAAAAA-3', 0.
  15. inverse positive strand, negative direction, looking for 5'-AAAAAAAA-3', 0.
  16. inverse positive strand, positive direction, looking for 5'-AAAAAAAA-3', 0.

AAA (Kouhpayeh) core promoters

AAA (Kouhpayeh) proximal promoters

AAA (Kouhpayeh) distal promoters

Androgen response element (Wilson) samplings

Copying a responsive elements consensus sequence 5'-TGATTCGTGAG-3' and putting the sequence in "⌘F" finds none between ZNF497 and A1BG or none between ZSCAN22 and A1BG as can be found by the computer programs.

For the Basic programs testing consensus sequence 5'-AAAAAAAA-3' (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:

  1. negative strand, negative direction, looking for 5'-AAAAAAAA-3', 0.
  2. negative strand, positive direction, looking for 5'-AAAAAAAA-3', 0.
  3. positive strand, negative direction, looking for 5'-AAAAAAAA-3', 0.
  4. positive strand, positive direction, looking for 5'-AAAAAAAA-3', 0.
  5. complement, negative strand, negative direction, looking for 5'-TTTTTTTT-3', 0.
  6. complement, negative strand, positive direction, looking for 5'-TTTTTTTT-3', 0.
  7. complement, positive strand, negative direction, looking for 5'-TTTTTTTT-3', 0.
  8. complement, positive strand, positive direction, looking for 5'-TTTTTTTT-3', 0.
  9. inverse complement, negative strand, negative direction, looking for 5'-TTTTTTTT-3', 0.
  10. inverse complement, negative strand, positive direction, looking for 5'-TTTTTTTT-3', 0.
  11. inverse complement, positive strand, negative direction, looking for 5'-TTTTTTTT-3', 0.
  12. inverse complement, positive strand, positive direction, looking for 5'-TTTTTTTT-3', 0.
  13. inverse negative strand, negative direction, looking for 5'-AAAAAAAA-3', 0.
  14. inverse negative strand, positive direction, looking for 5'-AAAAAAAA-3', 0.
  15. inverse positive strand, negative direction, looking for 5'-AAAAAAAA-3', 0.
  16. inverse positive strand, positive direction, looking for 5'-AAAAAAAA-3', 0.

AAA (Wilson) core promoters

AAA (Wilson) proximal promoters

AAA (Wilson) distal promoters

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

See also

References

  1. 1.0 1.1 1.2 1.3 S Kouhpayeh, AR Einizadeh, Z Hejazi, M Boshtam, L Shariati, M Mirian, L Darzi, M Sojoudi, H Khanahmad and A Rezaei (1 July 2016). "Antiproliferative effect of a synthetic aptamer mimicking androgen response elements in the LNCaP cell line" (PDF). Cancer Gene Therapy. 23: 254–257. doi:10.1038/cgt.2016.26. Retrieved 3 October 2020.
  2. 2.0 2.1 RefSeq (January 2017). "AR androgen receptor [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 1 November 2020.
  3. Stephen Wilson, Jianfei Qi & Fabian V. Filipp (14 September 2016). "Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines". Scientific Reports. 6: 32611. doi:10.1038/srep32611. Retrieved 3 October 2020.

External links