TATA box hydrolase family

Revision as of 05:15, 18 July 2024 by Marshallsumter (talk | contribs) (Created page with "The '''TATA box''' (also called '''Goldberg-Hogness box''')<ref name=Lifton>{{ cite journal | author = R. P. Lifton, M. L. Goldberg, R. W. Karp, and D. S. Hogness | year = 1978 | title = The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications | url = https://symposium.cshlp.org/content/42/1047.extract | journal = Cold Spring Harbor Symposia on Quantitative Biology | volume = 42 | issue = | pages = 1047–51 | doi = 10.11...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The TATA box (also called Goldberg-Hogness box)[1] is a DNA sequence (cis-regulatory element) found in the promoter region of genes in archaea and eukaryotes;[2] approximately 24% of human genes contain a TATA box within the core promoter.[3]

Human genes

"TATA-containing genes are more often highly regulated, such as by biotic or stress stimuli."[4] Only "∼10% of these TATA-containing promoters have the canonical TATA box (TATAWAWR)."[4]

"SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box."[5]

Different "TATA box sequences have different abilities to convey the activating signals of certain enhancers and activators in mammalian cells [...] and in yeast [...]."[5]

"SRF is a well established master regulator of the specific family of genes encoding the actin cytoskeleton and contractile apparatus [...], and we found that ~40% of the core promoters for these genes contain a TATA box, which is a significant enrichment compared to the low overall frequency of TATA-containing promoters in human and mouse genomes (...)."[5] "Global frequencies of core promoter types for human [9010 orthologous mouse-human promoter pairs with 1848 TATA-containing or 7162 TATA-less][6] genes with experimentally validated transcription start sites [are known from 2006]."[5] "The TATA box [...] has a consensus sequence of TATAWAAR [...]."[5] W = A or T and R = A or G. We "estimate that ~17% of promoters contain a TATA box".[6]

Gene ID: 1116

"Chitinases catalyze the hydrolysis of chitin, which is an abundant glycopolymer found in insect exoskeletons and fungal cell walls. The glycoside hydrolase 18 family of chitinases includes eight human family members. This gene encodes a glycoprotein member of the glycosyl hydrolase 18 family. The protein lacks chitinase activity and is secreted by activated macrophages, chondrocytes, neutrophils and synovial cells. The protein is thought to play a role in the process of inflammation and tissue remodeling."[7] It has a TATA box (CATAAAA) from -30 to -24 nts from the TSS and a TATA box (TATATAAA) from 16 to 23 nts from the TSS.[6]

Gene ID: 3938

"The protein encoded by this gene belongs to the glycosyl hydrolase 1 family of proteins. The encoded preproprotein is proteolytically processed to generate the mature enzyme. This enzyme is integral to the plasma membrane and has both phlorizin hydrolase activity and lactase activity. Mutations in this gene are associated with congenital lactase deficiency. Polymorphisms in this gene are associated with lactase persistence, in which intestinal lactase activity persists at childhood levels into adulthood."[8]

Gene ID: 10397

"This gene is a member of the N-myc downregulated gene family which belongs to the alpha/beta hydrolase superfamily. The protein encoded by this gene is a cytoplasmic protein involved in stress responses, hormone responses, cell growth, and differentiation. The encoded protein is necessary for p53-mediated caspase activation and apoptosis. Mutations in this gene are a cause of Charcot-Marie-Tooth disease type 4D, and expression of this gene may be a prognostic indicator for several types of cancer. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene."[9]

Families of TATA box genes

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

References

  1. R. P. Lifton, M. L. Goldberg, R. W. Karp, and D. S. Hogness (1978). "The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications". Cold Spring Harbor Symposia on Quantitative Biology. 42: 1047–51. doi:10.1101/SQB.1978.042.01.105. PMID 98262.
  2. Stephen T. Smale and James T. Kadonaga (July 2003). "The RNA Polymerase II Core Promoter" (PDF). Annual Review of Biochemistry. 72 (1): 449–79. doi:10.1146/annurev.biochem.72.121801.161520. PMID 12651739. Retrieved 2012-05-07.
  3. C Yang, E Bolotin, T Jiang, FM Sladek, E Martinez (March 2007). "Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters". Gene. 389 (1): 52–65. doi:10.1016/j.gene.2006.09.029. PMID 17123746.
  4. 4.0 4.1 Chuhu Yang, Eugene Bolotin, Tao Jiang, Frances M. Sladek, and Ernest Martinez (10 October 2006). "Prevalence of the Initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters". Gene. 389 (1): 52–65. doi:10.1016/j.gene.2006.09.029. PMID 17123746. Retrieved 2024-06-07.
  5. 5.0 5.1 5.2 5.3 5.4 Muyu Xu, Elsie Gonzalez-Hurtado, and Ernest Martinez (April 2016). "Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1859 (4): 553–563. doi:10.1016/j.bbagrm.2016.01.005. Retrieved 2024-06-08.
  6. 6.0 6.1 6.2 Victor X Jin, Gregory AC Singer, Francisco J Agosto-Pérez, Sandya Liyanarachchi, and Ramana V Davuluri (2006). "Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs". BMC Bioinformatics. 7: 114. doi:10.1186/1471-2105-7-114. Retrieved 2024-06-09.
  7. RefSeq (September 2009). "CHI3L1 chitinase 3 like 1 [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-06-09.
  8. RefSeq (January 2016). "LCT lactase [ Homo sapiens ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 2024-06-27.
  9. RefSeq (May 2012). "NDRG1 N-myc downstream regulated 1 [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-07-13.

External links