TATA box nuclear hormone receptor family

Jump to navigation Jump to search

The TATA box (also called Goldberg-Hogness box)[1] is a DNA sequence (cis-regulatory element) found in the promoter region of genes in archaea and eukaryotes;[2] approximately 24% of human genes contain a TATA box within the core promoter.[3]

Human genes

"TATA-containing genes are more often highly regulated, such as by biotic or stress stimuli."[4] Only "∼10% of these TATA-containing promoters have the canonical TATA box (TATAWAWR)."[4]

"SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box."[5]

Different "TATA box sequences have different abilities to convey the activating signals of certain enhancers and activators in mammalian cells [...] and in yeast [...]."[5]

"SRF is a well established master regulator of the specific family of genes encoding the actin cytoskeleton and contractile apparatus [...], and we found that ~40% of the core promoters for these genes contain a TATA box, which is a significant enrichment compared to the low overall frequency of TATA-containing promoters in human and mouse genomes (...)."[5] "Global frequencies of core promoter types for human [9010 orthologous mouse-human promoter pairs with 1848 TATA-containing or 7162 TATA-less][6] genes with experimentally validated transcription start sites [are known from 2006]."[5] "The TATA box [...] has a consensus sequence of TATAWAAR [...]."[5] W = A or T and R = A or G. We "estimate that ~17% of promoters contain a TATA box".[6]

Gene ID: 2494

"The protein encoded by this gene is a DNA-binding zinc finger transcription factor and is a member of the fushi tarazu factor-1 subfamily of orphan nuclear receptors. The encoded protein is involved in the expression of genes for hepatitis B virus and cholesterol biosynthesis, and may be an important regulator of embryonic development."[7] It has a TATA box (TATAACA) from -28 to -21 nts from the TSS.[6]

Gene ID: 8431

"The protein encoded by this gene is an unusual orphan receptor that contains a putative ligand-binding domain but lacks a conventional DNA-binding domain. The gene product is a member of the nuclear hormone receptor family, a group of transcription factors regulated by small hydrophobic hormones, a subset of which do not have known ligands and are referred to as orphan nuclear receptors. The protein has been shown to interact with retinoid and thyroid hormone receptors, inhibiting their ligand-dependent transcriptional activation. In addition, interaction with estrogen receptors has been demonstrated, leading to inhibition of function. Studies suggest that the protein represses nuclear hormone receptor-mediated transactivation via two separate steps: competition with coactivators and the direct effects of its transcriptional repressor function."[8]

Families of TATA box genes

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

References

  1. R. P. Lifton, M. L. Goldberg, R. W. Karp, and D. S. Hogness (1978). "The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications". Cold Spring Harbor Symposia on Quantitative Biology. 42: 1047–51. doi:10.1101/SQB.1978.042.01.105. PMID 98262.
  2. Stephen T. Smale and James T. Kadonaga (July 2003). "The RNA Polymerase II Core Promoter" (PDF). Annual Review of Biochemistry. 72 (1): 449–79. doi:10.1146/annurev.biochem.72.121801.161520. PMID 12651739. Retrieved 2012-05-07.
  3. C Yang, E Bolotin, T Jiang, FM Sladek, E Martinez (March 2007). "Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters". Gene. 389 (1): 52–65. doi:10.1016/j.gene.2006.09.029. PMID 17123746.
  4. 4.0 4.1 Chuhu Yang, Eugene Bolotin, Tao Jiang, Frances M. Sladek, and Ernest Martinez (10 October 2006). "Prevalence of the Initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters". Gene. 389 (1): 52–65. doi:10.1016/j.gene.2006.09.029. PMID 17123746. Retrieved 2024-06-07.
  5. 5.0 5.1 5.2 5.3 5.4 Muyu Xu, Elsie Gonzalez-Hurtado, and Ernest Martinez (April 2016). "Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1859 (4): 553–563. doi:10.1016/j.bbagrm.2016.01.005. Retrieved 2024-06-08.
  6. 6.0 6.1 6.2 Victor X Jin, Gregory AC Singer, Francisco J Agosto-Pérez, Sandya Liyanarachchi, and Ramana V Davuluri (2006). "Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs". BMC Bioinformatics. 7: 114. doi:10.1186/1471-2105-7-114. Retrieved 2024-06-09.
  7. RefSeq (June 2016). "NR5A2 nuclear receptor subfamily 5 group A member 2 [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-06-10.
  8. RefSeq (July 2008). "NR0B2 nuclear receptor subfamily 0 group B member 2 [ Homo sapiens ]". Bethsda, Maryland, USA: ncbi.nlm.nih. Retrieved 2024-07-10.

External links