MAFF (gene): Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
Matt Pijoan (talk | contribs)
m 1 revision imported
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
[[File:W-F1.jpg|thumb|353x353px|Structures of the Maf family proteins.]]
| update_page = yes
'''Transcription factor MafF''' is a [[BZIP Maf|bZip Maf]] [[transcription factor]] [[protein]] that in humans is encoded by the ''MAFF'' [[gene]].<ref name="Fujiwara_1993">{{cite journal | vauthors = Fujiwara KT, Kataoka K, Nishizawa M | title = Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain | journal = Oncogene | volume = 8 | issue = 9 | pages = 2371–80 | date = Sep 1993 | pmid = 8361754 | doi =  }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23764| accessdate = }}</ref>
| require_manual_inspection = no
 
| update_protein_box = yes
MafF is one of the [[small Maf]] proteins, which are basic region and basic [[leucine zipper]] (bZIP)-type transcription factors. The HUGO Gene Nomenclature Committee-approved gene name of ''MAFF'' is “v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F”.
| update_summary = yes
 
| update_citations = yes
== Discovery ==
}}
 
MafF was first cloned and identified in chicken in 1993 as a member of the small Maf (sMaf) genes.<ref name="Fujiwara_1993" /> MAFF has been identified in many vertebrates, including humans.<ref name="entrez" /> There are three functionally redundant sMaf proteins in vertebrates, MafF, [[MAFG|MafG]], and [[MAFK|MafK]].
 
== Structure ==
 
MafF has a bZIP structure that consists of a basic region for DNA binding and a leucine zipper structure for dimer formation.<ref name="Fujiwara_1993" /> Similar to other sMafs, MafF lacks any canonical transcriptional activation domains.<ref name="Fujiwara_1993" />
 
== Expression ==
 
''MAFF'' is broadly but differentially expressed in various tissues. ''MAFF'' expression was detected in all 16 tissues examined by the human BodyMap Project, but relatively abundant in adipose, colon, lung, prostate and skeletal muscle tissues.<ref>{{cite journal | vauthors = Petryszak R, Burdett T, Fiorelli B, Fonseca NA, Gonzalez-Porta M, Hastings E, Huber W, Jupp S, Keays M, Kryvych N, McMurry J, Marioni JC, Malone J, Megy K, Rustici G, Tang AY, Taubert J, Williams E, Mannion O, Parkinson HE, Brazma A | title = Expression Atlas update--a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments | journal = Nucleic Acids Research | volume = 42 | issue = Database issue | pages = D926-32 | date = Jan 2014 | pmid = 24304889 | doi = 10.1093/nar/gkt1270 | pmc=3964963}}</ref> Human ''MAFF'' gene is induced by proinflammatory cytokines, interleukin 1 beta and tumor necrosis factor in myometrial cells.<ref>{{cite journal | vauthors = Massrieh W, Derjuga A, Doualla-Bell F, Ku CY, Sanborn BM, Blank V | title = Regulation of the MAFF transcription factor by proinflammatory cytokines in myometrial cells | journal = Biology of Reproduction | volume = 74 | issue = 4 | pages = 699–705 | date = Apr 2006 | pmid = 16371591 | doi = 10.1095/biolreprod.105.045450 | access-date =  }}</ref>
 
== Function ==
 
Because of sequence similarity, no functional differences have been observed among the sMafs in terms of their bZIP structures.  sMafs form homodimers by themselves and heterodimers with other specific bZIP transcription factors, such as CNC (cap 'n' collar) proteins [p45 NF-E2 ([[NFE2]]), Nrf1 ([[NFE2L1]]), Nrf2 ([[NFE2L2]]), and Nrf3 ([[NFE2L3]])]<ref name="Igarashi_1994">{{cite journal | vauthors = Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M | title = Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins | journal = Nature | volume = 367 | issue = 6463 | pages = 568–72 | date = Feb 1994 | pmid = 8107826 | doi = 10.1038/367568a0 }}</ref><ref>{{cite journal | vauthors = Johnsen O, Murphy P, Prydz H, Kolsto AB | title = Interaction of the CNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selection and regulation of transcription | journal = Nucleic Acids Research | volume = 26 | issue = 2 | pages = 512–20 | date = Jan 1998 | pmid = 9421508 | doi =  10.1093/nar/26.2.512 | pmc=147270}}</ref><ref name="Itoh_1997">{{cite journal | vauthors = Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y | title = An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements | journal = Biochemical and Biophysical Research Communications | volume = 236 | issue = 2 | pages = 313–22 | date = Jul 1997 | pmid = 9240432 | doi =  10.1006/bbrc.1997.6943}}</ref><ref>{{cite journal | vauthors = Kobayashi A, Ito E, Toki T, Kogame K, Takahashi S, Igarashi K, Hayashi N, Yamamoto M | title = Molecular cloning and functional characterization of a new Cap'n' collar family transcription factor Nrf3 | journal = The Journal of Biological Chemistry | volume = 274 | issue = 10 | pages = 6443–52 | date = Mar 1999 | pmid = 10037736 | doi =  10.1074/jbc.274.10.6443}}</ref> and Bach proteins ([[BACH1]] and [[BACH2]]).<ref name="Oyake_1996">{{cite journal | vauthors = Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K | title = Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site | journal = Molecular and Cellular Biology | volume = 16 | issue = 11 | pages = 6083–95 | date = Nov 1996 | pmid = 8887638 | doi =  10.1128/mcb.16.11.6083 | pmc=231611}}</ref>
 
== Target genes ==
 
sMafs regulate different target genes depending on their partners. For instance, the p45-NF-E2-sMaf heterodimer regulate genes responsible for platelet production.<ref name="Igarashi_1994" /><ref name="Shavit_1998">{{cite journal | vauthors = Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, Engel JD | title = Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice | journal = Genes & Development | volume = 12 | issue = 14 | pages = 2164–74 | date = Jul 1998 | pmid = 9679061 | doi =  10.1101/gad.12.14.2164 | pmc=317009}}</ref><ref>{{cite journal | vauthors = Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH | title = Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development | journal = Cell | volume = 81 | issue = 5 | pages = 695–704 | date = Jun 1995 | pmid = 7774011 | doi =  10.1016/0092-8674(95)90531-6}}</ref> Nrf2-sMaf heterodimer regulates a battery of cytoprotective genes, such as antioxidant/xenobiotic metabolizing enzyme genes.<ref name="Itoh_1997" /><ref name=":0">{{cite journal | vauthors = Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M | title = Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes | journal = Molecular and Cellular Biology | volume = 25 | issue = 18 | pages = 8044–51 | date = Sep 2005 | pmid = 16135796 | doi = 10.1128/MCB.25.18.8044-8051.2005 | pmc=1234339}}</ref> The Bach1-sMaf heterodimer regulates the heme oxygenase-1 gene.<ref name="Oyake_1996" /> In particular, it has been reported that MafF regulates the oxytocin receptor gene.<ref>{{cite journal | vauthors = Kimura T, Ivell R, Rust W, Mizumoto Y, Ogita K, Kusui C, Matsumura Y, Azuma C, Murata Y | title = Molecular cloning of a human MafF homologue, which specifically binds to the oxytocin receptor gene in term myometrium | journal = Biochemical and Biophysical Research Communications | volume = 264 | issue = 1 | pages = 86–92 | date = Oct 1999 | pmid = 10527846 | doi = 10.1006/bbrc.1999.1487 | access-date = }}</ref> The contribution of individual sMafs to the transcriptional regulation of their target genes has not yet been well examined.


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Disease linkage==
{{GNF_Protein_box
| image =
| image_source =
| PDB =  
| Name = V-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)
| HGNCid = 6780
| Symbol = MAFF
| AltSymbols =; U-MAF
| OMIM = 604877
| ECnumber = 
| Homologene = 7825
| MGIid = 96910
| GeneAtlas_image1 = PBB_GE_MAFF_36711_at_tn.png
| GeneAtlas_image2 = PBB_GE_MAFF_205193_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0043565 |text = sequence-specific DNA binding}} {{GNF_GO|id=GO:0046983 |text = protein dimerization activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0001701 |text = in utero embryonic development}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0006366 |text = transcription from RNA polymerase II promoter}} {{GNF_GO|id=GO:0007567 |text = parturition}} {{GNF_GO|id=GO:0045604 |text = regulation of epidermal cell differentiation}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 23764
    | Hs_Ensembl = ENSG00000185022
    | Hs_RefseqProtein = NP_036455
    | Hs_RefseqmRNA = NM_012323
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 22
    | Hs_GenLoc_start = 36927944
    | Hs_GenLoc_end = 36942456
    | Hs_Uniprot = Q9ULX9
    | Mm_EntrezGene = 17133
    | Mm_Ensembl = ENSMUSG00000042622
    | Mm_RefseqmRNA = NM_010755
    | Mm_RefseqProtein = NP_034885
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 15
    | Mm_GenLoc_start = 79174933
    | Mm_GenLoc_end = 79186336
    | Mm_Uniprot = Q3U0G5
  }}
}}
'''V-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)''', also known as '''MAFF''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23764| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
Loss of sMafs results in disease-like phenotypes as summarized in table below. Mice lacking MafF are seemingly healthy under laboratory conditions.<ref name=":1">{{cite journal | vauthors = Onodera K, Shavit JA, Motohashi H, Katsuoka F, Akasaka JE, Engel JD, Yamamoto M | title = Characterization of the murine mafF gene | journal = The Journal of Biological Chemistry | volume = 274 | issue = 30 | pages = 21162–9 | date = Jul 1999 | pmid = 10409670 | doi =  10.1074/jbc.274.30.21162| access-date =  }}</ref> However, mice lacking MafG exhibit mild neuronal phenotype and mild thrombocytopenia,<ref name=":2">{{cite journal | vauthors = Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, Engel JD | title = Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice | journal = Genes & Development | volume = 12 | issue = 14 | pages = 2164–74 | date = Jul 1998 | pmid = 9679061 | doi =  10.1101/gad.12.14.2164| access-date = | pmc=317009}}</ref> mice lacking ''Mafg'' and one allele of ''Mafk'' (''Mafg<sup>−/−</sup>::Mafk<sup>+/−</sup>'') exhibit progressive neuronal degeneration, thrombocytopenia and cataract,<ref name=":3">{{cite journal | vauthors = Katsuoka F, Motohashi H, Tamagawa Y, Kure S, Igarashi K, Engel JD, Yamamoto M | title = Small Maf compound mutants display central nervous system neuronal degeneration, aberrant transcription, and Bach protein mislocalization coincident with myoclonus and abnormal startle response | journal = Molecular and Cellular Biology | volume = 23 | issue = 4 | pages = 1163–74 | date = Feb 2003 | pmid = 12556477 | doi =  10.1128/mcb.23.4.1163-1174.2003 | pmc=141134}}</ref><ref name=":4">{{cite journal | vauthors = Agrawal SA, Anand D, Siddam AD, Kakrana A, Dash S, Scheiblin DA, Dang CA, Terrell AM, Waters SM, Singh A, Motohashi H, Yamamoto M, Lachke SA | title = Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract | journal = Human Genetics | volume = 134 | issue = 7 | pages = 717–35 | date = Jul 2015 | pmid = 25896808 | doi = 10.1007/s00439-015-1554-5 | pmc=4486474}}</ref> and mice lacking MafG and MafK (''Mafg<sup>−/−</sup>::Mafk<sup>−/−</sup>'') exhibit more severe neuronal degeneration and die in the perinatal stage.<ref name=":5">{{cite journal | vauthors = Onodera K, Shavit JA, Motohashi H, Yamamoto M, Engel JD | title = Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice | journal = The EMBO Journal | volume = 19 | issue = 6 | pages = 1335–45 | date = Mar 2000 | pmid = 10716933 | doi = 10.1093/emboj/19.6.1335 | pmc=305674}}</ref> Mice lacking MafF, MafG and MafK are embryonic lethal, demonstrating that MafF is indispensable for embryonic development.<ref name=":6">{{cite journal | vauthors = Yamazaki H, Katsuoka F, Motohashi H, Engel JD, Yamamoto M | title = Embryonic lethality and fetal liver apoptosis in mice lacking all three small Maf proteins | journal = Molecular and Cellular Biology | volume = 32 | issue = 4 | pages = 808–16 | date = Feb 2012 | pmid = 22158967 | doi = 10.1128/MCB.06543-11 | pmc=3272985}}</ref> Embryonic fibroblasts that are derived from ''Maff<sup>−/−</sup>::Mafg<sup href="MAF (gene)">-/−</sup>::Mafk<sup>−/−</sup>'' mice fail to activate Nrf2-dependent cytoprotective genes in response to stress.<ref name=":0" />
{{PBB_Summary
{| class="wikitable"
| section_title =  
! colspan="3" |Genotype
| summary_text = The protein encoded by this gene is a basic leucine zipper (bZIP) transcription factor that lacks a transactivation domain. It is known to bind the US-2 DNA element in the promoter of the oxytocin receptor (OTR) gene and most likely heterodimerizes with other leucine zipper-containing proteins to enhance expression of the OTR gene during term pregnancy. The encoded protein can also form homodimers, and since it lacks a transactivation domain, the homodimer may act as a repressor of transcription. This gene may also be involved in the cellular stress response. Two transcript variants encoding the same protein have been found for this gene.<ref name="entrez">{{cite web | title = Entrez Gene: MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23764| accessdate = }}</ref>
! rowspan="2" |Mouse Phenotype
}}
|-
!''<u>Maff</u>''
!''Mafg''
!''Mafk''
|-
|'''−/−'''
|
|
|No apparent phenotype under laboratory conditions <ref name=":1" />
|-
|
|−/−
|
|Mild motor ataxia, mild thrombocytopenia <ref name=":2" />
|-
|
|−/−
| +/−
|Severe motor ataxia, progressive neuronal degeneration, severe thrombocytopenia, and cataract <ref name=":3" /><ref name=":4" />
|-
|
|−/−
|−/−
|More severe neuronal phenotypes, and perinatal lethal <ref name=":5" />
|-
|'''−/−'''
| +/−
|−/−
|No severe abnormality <ref name=":6" /> (Fertile)
|-
|'''−/−'''
|−/−
|−/−
|Growth retardation, fetal liver hypoplasia, and lethal around embryonic day, 13.5 <ref name=":6" />
|-
| colspan="4" | +/− ([[heterozygote]]), −/− ([[Homozygotes|homozygote]]), blank (wild-type)
|}
In addition, accumulating evidence suggests that as partners of CNC and Bach proteins, sMafs are involved in the onset and progression of various human diseases, including neurodegeneration, arteriosclerosis and cancer.


==See also==
== See also ==
* [[MAF (gene)]]
* [[MAF (gene)]]


==References==
==Notes==
{{reflist|2}}
{{Academic-written review
| wikidate = 2016
| journal = [[Gene (journal)|Gene]]
| title  = {{#property:P1476|from=Q37014084}}
| authors = {{#property:P2093|from=Q37014084}}
| date    = {{#property:P577|from=Q37014084}}
| volume  = {{#property:P478|from=Q37014084}}
| issue  = {{#property:P433|from=Q37014084}}
| pages  = {{#property:P304|from=Q37014084}}
| doi    = {{#property:P356|from=Q37014084}}
| pmid    = {{#property:P698|from=Q37014084}}
| pmc    = {{#property:P932|from=Q37014084}}
}}
 
== References ==
{{reflist|33em}}


==Further reading==
== Further reading ==
{{refbegin | 2}}
{{refbegin|33em}}
{{PBB_Further_reading
* {{cite journal | vauthors = Ye X, Li Y, Huang Q, Yu Y, Yuan H, Wang P, Wan D, Gu J, Huo K, Li YY, Lu H | title = The novel human gene MIP functions as a co-activator of hMafF | journal = Archives of Biochemistry and Biophysics | volume = 449 | issue = 1-2 | pages = 87–93 | date = May 2006 | pmid = 16549056 | doi = 10.1016/j.abb.2006.02.011 }}
| citations =
* {{cite journal | vauthors = Massrieh W, Derjuga A, Doualla-Bell F, Ku CY, Sanborn BM, Blank V | title = Regulation of the MAFF transcription factor by proinflammatory cytokines in myometrial cells | journal = Biology of Reproduction | volume = 74 | issue = 4 | pages = 699–705 | date = Apr 2006 | pmid = 16371591 | doi = 10.1095/biolreprod.105.045450 }}
*{{cite journal | author=Ye X, Li Y, Huang Q, ''et al.'' |title=The novel human gene MIP functions as a co-activator of hMafF. |journal=Arch. Biochem. Biophys. |volume=449 |issue= 1-2 |pages= 87-93 |year= 2006 |pmid= 16549056 |doi= 10.1016/j.abb.2006.02.011 }}
* {{cite journal | vauthors = Marini MG, Asunis I, Chan K, Chan JY, Kan YW, Porcu L, Cao A, Moi P | title = Cloning MafF by recognition site screening with the NFE2 tandem repeat of HS2: analysis of its role in globin and GCSl genes regulation | journal = Blood Cells, Molecules & Diseases | volume = 29 | issue = 2 | pages = 145–58 | year = 2003 | pmid = 12490281 | doi = 10.1006/bcmd.2002.0550 }}
*{{cite journal | author=Massrieh W, Derjuga A, Doualla-Bell F, ''et al.'' |title=Regulation of the MAFF transcription factor by proinflammatory cytokines in myometrial cells. |journal=Biol. Reprod. |volume=74 |issue= 4 |pages= 699-705 |year= 2006 |pmid= 16371591 |doi= 10.1095/biolreprod.105.045450 }}
* {{cite journal | vauthors = Moran JA, Dahl EL, Mulcahy RT | title = Differential induction of mafF, mafG and mafK expression by electrophile-response-element activators | journal = The Biochemical Journal | volume = 361 | issue = Pt 2 | pages = 371–7 | date = Jan 2002 | pmid = 11772409 | pmc = 1222317 | doi = 10.1042/0264-6021:3610371 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
* {{cite journal | vauthors = Kataoka K, Yoshitomo-Nakagawa K, Shioda S, Nishizawa M | title = A set of Hox proteins interact with the Maf oncoprotein to inhibit its DNA binding, transactivation, and transforming activities | journal = The Journal of Biological Chemistry | volume = 276 | issue = 1 | pages = 819–26 | date = Jan 2001 | pmid = 11036080 | doi = 10.1074/jbc.M007643200 }}
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
* {{cite journal | vauthors = Kimura T, Ivell R, Rust W, Mizumoto Y, Ogita K, Kusui C, Matsumura Y, Azuma C, Murata Y | title = Molecular cloning of a human MafF homologue, which specifically binds to the oxytocin receptor gene in term myometrium | journal = Biochemical and Biophysical Research Communications | volume = 264 | issue = 1 | pages = 86–92 | date = Oct 1999 | pmid = 10527846 | doi = 10.1006/bbrc.1999.1487 }}
*{{cite journal  | author=Marini MG, Asunis I, Chan K, ''et al.'' |title=Cloning MafF by recognition site screening with the NFE2 tandem repeat of HS2: analysis of its role in globin and GCSl genes regulation. |journal=Blood Cells Mol. Dis. |volume=29 |issue= 2 |pages= 145-58 |year= 2003 |pmid= 12490281 |doi=  }}
* {{cite journal | vauthors = Johnsen O, Skammelsrud N, Luna L, Nishizawa M, Prydz H, Kolstø AB | title = Small Maf proteins interact with the human transcription factor TCF11/Nrf1/LCR-F1 | journal = Nucleic Acids Research | volume = 24 | issue = 21 | pages = 4289–97 | date = Nov 1996 | pmid = 8932385 | pmc = 146217 | doi = 10.1093/nar/24.21.4289 }}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
* {{cite journal | vauthors = Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M | title = Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins | journal = Nature | volume = 367 | issue = 6463 | pages = 568–72 | date = Feb 1994 | pmid = 8107826 | doi = 10.1038/367568a0 }}
*{{cite journal | author=Moran JA, Dahl EL, Mulcahy RT |title=Differential induction of mafF, mafG and mafK expression by electrophile-response-element activators. |journal=Biochem. J. |volume=361 |issue= Pt 2 |pages= 371-7 |year= 2002 |pmid= 11772409 |doi= }}
*{{cite journal | author=Kataoka K, Yoshitomo-Nakagawa K, Shioda S, Nishizawa M |title=A set of Hox proteins interact with the Maf oncoprotein to inhibit its DNA binding, transactivation, and transforming activities. |journal=J. Biol. Chem. |volume=276 |issue= 1 |pages= 819-26 |year= 2001 |pmid= 11036080 |doi= 10.1074/jbc.M007643200 }}
*{{cite journal | author=Dunham I, Shimizu N, Roe BA, ''et al.'' |title=The DNA sequence of human chromosome 22. |journal=Nature |volume=402 |issue= 6761 |pages= 489-95 |year= 1999 |pmid= 10591208 |doi= 10.1038/990031 }}
*{{cite journal  | author=Kimura T, Ivell R, Rust W, ''et al.'' |title=Molecular cloning of a human MafF homologue, which specifically binds to the oxytocin receptor gene in term myometrium. |journal=Biochem. Biophys. Res. Commun. |volume=264 |issue= 1 |pages= 86-92 |year= 1999 |pmid= 10527846 |doi= 10.1006/bbrc.1999.1487 }}
*{{cite journal | author=Johnsen O, Skammelsrud N, Luna L, ''et al.'' |title=Small Maf proteins interact with the human transcription factor TCF11/Nrf1/LCR-F1. |journal=Nucleic Acids Res. |volume=24 |issue= 21 |pages= 4289-97 |year= 1996 |pmid= 8932385 |doi= }}
*{{cite journal | author=Igarashi K, Kataoka K, Itoh K, ''et al.'' |title=Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. |journal=Nature |volume=367 |issue= 6463 |pages= 568-72 |year= 1994 |pmid= 8107826 |doi= 10.1038/367568a0 }}
}}
{{refend}}
{{refend}}


== External links ==
== External links ==
* {{MeshName|MAFF+protein,+human}}
* {{MeshName|MAFF+protein,+human}}
* {{FactorBook|MafF}}


{{Transcription factors|g1}}


{{gene-22-stub}}
{{NLM content}}
{{Transcription factors}}
[[Category:Transcription factors]]
[[Category:Transcription factors]]
{{WikiDoc Sources}}

Latest revision as of 12:27, 9 January 2019

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human
File:W-F1.jpg
Structures of the Maf family proteins.

Transcription factor MafF is a bZip Maf transcription factor protein that in humans is encoded by the MAFF gene.[1][2]

MafF is one of the small Maf proteins, which are basic region and basic leucine zipper (bZIP)-type transcription factors. The HUGO Gene Nomenclature Committee-approved gene name of MAFF is “v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F”.

Discovery

MafF was first cloned and identified in chicken in 1993 as a member of the small Maf (sMaf) genes.[1] MAFF has been identified in many vertebrates, including humans.[2] There are three functionally redundant sMaf proteins in vertebrates, MafF, MafG, and MafK.

Structure

MafF has a bZIP structure that consists of a basic region for DNA binding and a leucine zipper structure for dimer formation.[1] Similar to other sMafs, MafF lacks any canonical transcriptional activation domains.[1]

Expression

MAFF is broadly but differentially expressed in various tissues. MAFF expression was detected in all 16 tissues examined by the human BodyMap Project, but relatively abundant in adipose, colon, lung, prostate and skeletal muscle tissues.[3] Human MAFF gene is induced by proinflammatory cytokines, interleukin 1 beta and tumor necrosis factor in myometrial cells.[4]

Function

Because of sequence similarity, no functional differences have been observed among the sMafs in terms of their bZIP structures. sMafs form homodimers by themselves and heterodimers with other specific bZIP transcription factors, such as CNC (cap 'n' collar) proteins [p45 NF-E2 (NFE2), Nrf1 (NFE2L1), Nrf2 (NFE2L2), and Nrf3 (NFE2L3)][5][6][7][8] and Bach proteins (BACH1 and BACH2).[9]

Target genes

sMafs regulate different target genes depending on their partners. For instance, the p45-NF-E2-sMaf heterodimer regulate genes responsible for platelet production.[5][10][11] Nrf2-sMaf heterodimer regulates a battery of cytoprotective genes, such as antioxidant/xenobiotic metabolizing enzyme genes.[7][12] The Bach1-sMaf heterodimer regulates the heme oxygenase-1 gene.[9] In particular, it has been reported that MafF regulates the oxytocin receptor gene.[13] The contribution of individual sMafs to the transcriptional regulation of their target genes has not yet been well examined.

Disease linkage

Loss of sMafs results in disease-like phenotypes as summarized in table below. Mice lacking MafF are seemingly healthy under laboratory conditions.[14] However, mice lacking MafG exhibit mild neuronal phenotype and mild thrombocytopenia,[15] mice lacking Mafg and one allele of Mafk (Mafg−/−::Mafk+/−) exhibit progressive neuronal degeneration, thrombocytopenia and cataract,[16][17] and mice lacking MafG and MafK (Mafg−/−::Mafk−/−) exhibit more severe neuronal degeneration and die in the perinatal stage.[18] Mice lacking MafF, MafG and MafK are embryonic lethal, demonstrating that MafF is indispensable for embryonic development.[19] Embryonic fibroblasts that are derived from Maff−/−::Mafg-/−::Mafk−/− mice fail to activate Nrf2-dependent cytoprotective genes in response to stress.[12]

Genotype Mouse Phenotype
Maff Mafg Mafk
−/− No apparent phenotype under laboratory conditions [14]
−/− Mild motor ataxia, mild thrombocytopenia [15]
−/− +/− Severe motor ataxia, progressive neuronal degeneration, severe thrombocytopenia, and cataract [16][17]
−/− −/− More severe neuronal phenotypes, and perinatal lethal [18]
−/− +/− −/− No severe abnormality [19] (Fertile)
−/− −/− −/− Growth retardation, fetal liver hypoplasia, and lethal around embryonic day, 13.5 [19]
+/− (heterozygote), −/− (homozygote), blank (wild-type)

In addition, accumulating evidence suggests that as partners of CNC and Bach proteins, sMafs are involved in the onset and progression of various human diseases, including neurodegeneration, arteriosclerosis and cancer.

See also

Notes


References

  1. 1.0 1.1 1.2 1.3 Fujiwara KT, Kataoka K, Nishizawa M (Sep 1993). "Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain". Oncogene. 8 (9): 2371–80. PMID 8361754.
  2. 2.0 2.1 "Entrez Gene: MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)".
  3. Petryszak R, Burdett T, Fiorelli B, Fonseca NA, Gonzalez-Porta M, Hastings E, Huber W, Jupp S, Keays M, Kryvych N, McMurry J, Marioni JC, Malone J, Megy K, Rustici G, Tang AY, Taubert J, Williams E, Mannion O, Parkinson HE, Brazma A (Jan 2014). "Expression Atlas update--a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments". Nucleic Acids Research. 42 (Database issue): D926–32. doi:10.1093/nar/gkt1270. PMC 3964963. PMID 24304889.
  4. Massrieh W, Derjuga A, Doualla-Bell F, Ku CY, Sanborn BM, Blank V (Apr 2006). "Regulation of the MAFF transcription factor by proinflammatory cytokines in myometrial cells". Biology of Reproduction. 74 (4): 699–705. doi:10.1095/biolreprod.105.045450. PMID 16371591.
  5. 5.0 5.1 Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M (Feb 1994). "Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins". Nature. 367 (6463): 568–72. doi:10.1038/367568a0. PMID 8107826.
  6. Johnsen O, Murphy P, Prydz H, Kolsto AB (Jan 1998). "Interaction of the CNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selection and regulation of transcription". Nucleic Acids Research. 26 (2): 512–20. doi:10.1093/nar/26.2.512. PMC 147270. PMID 9421508.
  7. 7.0 7.1 Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (Jul 1997). "An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements". Biochemical and Biophysical Research Communications. 236 (2): 313–22. doi:10.1006/bbrc.1997.6943. PMID 9240432.
  8. Kobayashi A, Ito E, Toki T, Kogame K, Takahashi S, Igarashi K, Hayashi N, Yamamoto M (Mar 1999). "Molecular cloning and functional characterization of a new Cap'n' collar family transcription factor Nrf3". The Journal of Biological Chemistry. 274 (10): 6443–52. doi:10.1074/jbc.274.10.6443. PMID 10037736.
  9. 9.0 9.1 Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K (Nov 1996). "Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site". Molecular and Cellular Biology. 16 (11): 6083–95. doi:10.1128/mcb.16.11.6083. PMC 231611. PMID 8887638.
  10. Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, Engel JD (Jul 1998). "Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice". Genes & Development. 12 (14): 2164–74. doi:10.1101/gad.12.14.2164. PMC 317009. PMID 9679061.
  11. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH (Jun 1995). "Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development". Cell. 81 (5): 695–704. doi:10.1016/0092-8674(95)90531-6. PMID 7774011.
  12. 12.0 12.1 Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M (Sep 2005). "Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes". Molecular and Cellular Biology. 25 (18): 8044–51. doi:10.1128/MCB.25.18.8044-8051.2005. PMC 1234339. PMID 16135796.
  13. Kimura T, Ivell R, Rust W, Mizumoto Y, Ogita K, Kusui C, Matsumura Y, Azuma C, Murata Y (Oct 1999). "Molecular cloning of a human MafF homologue, which specifically binds to the oxytocin receptor gene in term myometrium". Biochemical and Biophysical Research Communications. 264 (1): 86–92. doi:10.1006/bbrc.1999.1487. PMID 10527846.
  14. 14.0 14.1 Onodera K, Shavit JA, Motohashi H, Katsuoka F, Akasaka JE, Engel JD, Yamamoto M (Jul 1999). "Characterization of the murine mafF gene". The Journal of Biological Chemistry. 274 (30): 21162–9. doi:10.1074/jbc.274.30.21162. PMID 10409670.
  15. 15.0 15.1 Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, Engel JD (Jul 1998). "Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice". Genes & Development. 12 (14): 2164–74. doi:10.1101/gad.12.14.2164. PMC 317009. PMID 9679061.
  16. 16.0 16.1 Katsuoka F, Motohashi H, Tamagawa Y, Kure S, Igarashi K, Engel JD, Yamamoto M (Feb 2003). "Small Maf compound mutants display central nervous system neuronal degeneration, aberrant transcription, and Bach protein mislocalization coincident with myoclonus and abnormal startle response". Molecular and Cellular Biology. 23 (4): 1163–74. doi:10.1128/mcb.23.4.1163-1174.2003. PMC 141134. PMID 12556477.
  17. 17.0 17.1 Agrawal SA, Anand D, Siddam AD, Kakrana A, Dash S, Scheiblin DA, Dang CA, Terrell AM, Waters SM, Singh A, Motohashi H, Yamamoto M, Lachke SA (Jul 2015). "Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract". Human Genetics. 134 (7): 717–35. doi:10.1007/s00439-015-1554-5. PMC 4486474. PMID 25896808.
  18. 18.0 18.1 Onodera K, Shavit JA, Motohashi H, Yamamoto M, Engel JD (Mar 2000). "Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice". The EMBO Journal. 19 (6): 1335–45. doi:10.1093/emboj/19.6.1335. PMC 305674. PMID 10716933.
  19. 19.0 19.1 19.2 Yamazaki H, Katsuoka F, Motohashi H, Engel JD, Yamamoto M (Feb 2012). "Embryonic lethality and fetal liver apoptosis in mice lacking all three small Maf proteins". Molecular and Cellular Biology. 32 (4): 808–16. doi:10.1128/MCB.06543-11. PMC 3272985. PMID 22158967.

Further reading

External links