HOXA3: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
imported>GreenC bot
Remove 3 stray access-date. (GreenC bot job #5)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Homeobox protein Hox-A3''' is a [[protein]] that in humans is encoded by the ''HOXA3'' [[gene]].<ref name="pmid1973146">{{cite journal | vauthors = McAlpine PJ, Shows TB | title = Nomenclature for human homeobox genes | journal = Genomics | volume = 7 | issue = 3 | pages = 460 | date = July 1990 | pmid = 1973146 | pmc =  | doi = 10.1016/0888-7543(90)90186-X }}</ref><ref name="pmid1358459">{{cite journal | vauthors = Scott MP | title = Vertebrate homeobox gene nomenclature | journal = Cell | volume = 71 | issue = 4 | pages = 551–3 | date = November 1992 | pmid = 1358459 | pmc = | doi = 10.1016/0092-8674(92)90588-4 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: HOXA3 homeobox A3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3200| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Homeobox A3
| HGNCid = 5104
| Symbol = HOXA3
| AltSymbols =; HOX1; HOX1E; MGC10155
| OMIM = 142954
| ECnumber = 
| Homologene = 40725
| MGIid = 96175
| GeneAtlas_image1 = PBB_GE_HOXA3_208604_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0043565 |text = sequence-specific DNA binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0001974 |text = blood vessel remodeling}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0007275 |text = multicellular organismal development}} {{GNF_GO|id=GO:0008284 |text = positive regulation of cell proliferation}} {{GNF_GO|id=GO:0009887 |text = organ morphogenesis}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 3200
    | Hs_Ensembl = ENSG00000105997
    | Hs_RefseqProtein = NP_109377
    | Hs_RefseqmRNA = NM_030661
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 7
    | Hs_GenLoc_start = 27112334
    | Hs_GenLoc_end = 27133164
    | Hs_Uniprot = O43365
    | Mm_EntrezGene = 15400
    | Mm_Ensembl = ENSMUSG00000059723
    | Mm_RefseqmRNA = NM_010452
    | Mm_RefseqProtein = NP_034582
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 6
    | Mm_GenLoc_start = 52098645
    | Mm_GenLoc_end = 52142919
    | Mm_Uniprot = P02831
  }}
}}
'''Homeobox A3''', also known as '''HOXA3''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: HOXA3 homeobox A3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3200| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. This gene is part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which may regulate gene expression, morphogenesis, and differentiation. Three transcript variants encoding two different isoforms have been found for this gene.<ref name="entrez" />
{{PBB_Summary
| section_title =
| summary_text = In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. This gene is part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which may regulate gene expression, morphogenesis, and differentiation. Three transcript variants encoding two different isoforms have been found for this gene.<ref name="entrez">{{cite web | title = Entrez Gene: HOXA3 homeobox A3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3200| accessdate = }}</ref>
}}


==See also==
During normal fetal development, HoxA3 is expressed in mesenchymal neural crest cells and endodermal cells found in the third pharyngeal pouch.<ref name="Hunt_1991">{{cite journal | vauthors = Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R | title = A distinct Hox code for the branchial region of the vertebrate head | journal = Nature | volume = 353 | issue = 6347 | pages = 861–4 | date = October 1991 | pmid = 1682814 | doi = 10.1038/353861a0 }}</ref> Expression of HoxA3 in these cells affects the proper formation of the thymus, thyroid, and parathyroid organs.<ref name="Manley_1995">{{cite journal | vauthors = Manley NR, Capecchi MR | title = The role of Hoxa-3 in mouse thymus and thyroid development | journal = Development | volume = 121 | issue = 7 | pages = 1989–2003 | date = July 1995 | pmid = 7635047 }}</ref><ref name="Chojnowski_2014">{{cite journal | vauthors = Chojnowski JL, Masuda K, Trau HA, Thomas K, Capecchi M, Manley NR | title = Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse | journal = Development | volume = 141 | issue = 19 | pages = 3697–708 | date = October 2014 | pmid = 25249461 | doi = 10.1242/dev.110833 | pmc = 4197593 }}</ref> While the gene does not seem to affect the proliferation or migration of the pharyngeal neural crest cells, it does appear to trigger cellular differentiation events required to form these organs.<ref name="Manley_1995"/> Knockout of HoxA3 leads to failure in forming the thymus (athymia) and parathyroid gland (aparthyroidism).<ref name="Chojnowski_2014" /> Mutant HoxA3 also causes a reduction in thyroid size. While the follicular and parafollicular cells still differentiate, their numbers are reduced and they are not evenly distributed throughout the gland.<ref name="Manley_1995" /> Mutant HoxA3 models show similar phenotypes as those seen in DiGeorge’s Syndrome, and it is possible that the two are linked.<ref name="Manley_1995" />
 
== Regulation ==
 
The HOXA3 gene is [[Gene regulation|repressed]] by the [[microRNA]] [[MicroRNA mir-10|miR-10a]].<ref name="pmid17660710">{{cite journal | vauthors = Han L, Witmer PD, Casey E, Valle D, Sukumar S | title = DNA methylation regulates MicroRNA expression | journal = Cancer Biology & Therapy | volume = 6 | issue = 8 | pages = 1284–8 | date = August 2007 | pmid = 17660710 | doi = 10.4161/cbt.6.8.4486 }}</ref>
 
== See also ==
* [[Homeobox]]
* [[Homeobox]]


==References==
== References ==
{{reflist|2}}
{{reflist}}


==Further reading==
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Apiou F, Flagiello D, Cillo C, Malfoy B, Poupon MF, Dutrillaux B | title = Fine mapping of human HOX gene clusters | journal = Cytogenetics and Cell Genetics | volume = 73 | issue = 1-2 | pages = 114–5 | year = 1996 | pmid = 8646877 | doi = 10.1159/000134320 }}
| citations =
* {{cite journal | vauthors = Bonaldo MF, Lennon G, Soares MB | title = Normalization and subtraction: two approaches to facilitate gene discovery | journal = Genome Research | volume = 6 | issue = 9 | pages = 791–806 | date = September 1996 | pmid = 8889548 | doi = 10.1101/gr.6.9.791 }}
*{{cite journal  | author=Scott MP |title=Vertebrate homeobox gene nomenclature. |journal=Cell |volume=71 |issue= 4 |pages= 551-3 |year= 1992 |pmid= 1358459 |doi=  }}
* {{cite journal | vauthors = Manley NR, Capecchi MR | title = Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands | journal = Developmental Biology | volume = 195 | issue = 1 | pages = 1–15 | date = March 1998 | pmid = 9520319 | doi = 10.1006/dbio.1997.8827 }}
*{{cite journal | author=McAlpine PJ, Shows TB |title=Nomenclature for human homeobox genes. |journal=Genomics |volume=7 |issue= 3 |pages= 460 |year= 1990 |pmid= 1973146 |doi=  }}
* {{cite journal | vauthors = | title = Toward a complete human genome sequence | journal = Genome Research | volume = 8 | issue = 11 | pages = 1097–108 | date = November 1998 | pmid = 9847074 | doi = 10.1101/gr.8.11.1097 }}
*{{cite journal  | author=Apiou F, Flagiello D, Cillo C, ''et al.'' |title=Fine mapping of human HOX gene clusters. |journal=Cytogenet. Cell Genet. |volume=73 |issue= 1-2 |pages= 114-5 |year= 1996 |pmid= 8646877 |doi= }}
* {{cite journal | vauthors = Mulder GB, Manley N, Maggio-Price L | title = Retinoic acid-induced thymic abnormalities in the mouse are associated with altered pharyngeal morphology, thymocyte maturation defects, and altered expression of Hoxa3 and Pax1 | journal = Teratology | volume = 58 | issue = 6 | pages = 263–75 | date = December 1998 | pmid = 9894676 | doi = 10.1002/(SICI)1096-9926(199812)58:6<263::AID-TERA8>3.0.CO;2-A }}
*{{cite journal | author=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791-806 |year= 1997 |pmid= 8889548 |doi= }}
* {{cite journal | vauthors = Manzanares M, Nardelli J, Gilardi-Hebenstreit P, Marshall H, Giudicelli F, Martínez-Pastor MT, Krumlauf R, Charnay P | title = Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain | journal = The EMBO Journal | volume = 21 | issue = 3 | pages = 365–76 | date = February 2002 | pmid = 11823429 | pmc = 125344 | doi = 10.1093/emboj/21.3.365 }}
*{{cite journal | author=Manley NR, Capecchi MR |title=Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. |journal=Dev. Biol. |volume=195 |issue= 1 |pages= 1-15 |year= 1998 |pmid= 9520319 |doi= 10.1006/dbio.1997.8827 }}
* {{cite journal | vauthors = Kosaki K, Kosaki R, Suzuki T, Yoshihashi H, Takahashi T, Sasaki K, Tomita M, McGinnis W, Matsuo N | title = Complete mutation analysis panel of the 39 human HOX genes | journal = Teratology | volume = 65 | issue = 2 | pages = 50–62 | date = February 2002 | pmid = 11857506 | doi = 10.1002/tera.10009 }}
*{{cite journal | author= |title=Toward a complete human genome sequence. |journal=Genome Res. |volume=8 |issue= 11 |pages= 1097-108 |year= 1999 |pmid= 9847074 |doi= }}
* {{cite journal | vauthors = Kim J, Bhinge AA, Morgan XC, Iyer VR | title = Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment | journal = Nature Methods | volume = 2 | issue = 1 | pages = 47–53 | date = January 2005 | pmid = 15782160 | doi = 10.1038/nmeth726 }}
*{{cite journal | author=Mulder GB, Manley N, Maggio-Price L |title=Retinoic acid-induced thymic abnormalities in the mouse are associated with altered pharyngeal morphology, thymocyte maturation defects, and altered expression of Hoxa3 and Pax1. |journal=Teratology |volume=58 |issue= 6 |pages= 263-75 |year= 1999 |pmid= 9894676 |doi= 10.1002/(SICI)1096-9926(199812)58:6<263::AID-TERA8>3.0.CO;2-A }}
* {{cite journal | vauthors = Wissmüller S, Kosian T, Wolf M, Finzsch M, Wegner M | title = The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors | journal = Nucleic Acids Research | volume = 34 | issue = 6 | pages = 1735–44 | year = 2006 | pmid = 16582099 | pmc = 1421504 | doi = 10.1093/nar/gkl105 }}
*{{cite journal | author=Manzanares M, Nardelli J, Gilardi-Hebenstreit P, ''et al.'' |title=Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. |journal=EMBO J. |volume=21 |issue= 3 |pages= 365-76 |year= 2002 |pmid= 11823429 |doi= 10.1093/emboj/21.3.365 }}
*{{cite journal | author=Kosaki K, Kosaki R, Suzuki T, ''et al.'' |title=Complete mutation analysis panel of the 39 human HOX genes. |journal=Teratology |volume=65 |issue= 2 |pages= 50-62 |year= 2002 |pmid= 11857506 |doi= 10.1002/tera.10009 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | author=Scherer SW, Cheung J, MacDonald JR, ''et al.'' |title=Human chromosome 7: DNA sequence and biology. |journal=Science |volume=300 |issue= 5620 |pages= 767-72 |year= 2003 |pmid= 12690205 |doi= 10.1126/science.1083423 }}
*{{cite journal  | author=Hillier LW, Fulton RS, Fulton LA, ''et al.'' |title=The DNA sequence of human chromosome 7. |journal=Nature |volume=424 |issue= 6945 |pages= 157-64 |year= 2003 |pmid= 12853948 |doi= 10.1038/nature01782 }}
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | author=Kim J, Bhinge AA, Morgan XC, Iyer VR |title=Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. |journal=Nat. Methods |volume=2 |issue= 1 |pages= 47-53 |year= 2005 |pmid= 15782160 |doi= 10.1038/nmeth726 }}
*{{cite journal | author=Wissmüller S, Kosian T, Wolf M, ''et al.'' |title=The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. |journal=Nucleic Acids Res. |volume=34 |issue= 6 |pages= 1735-44 |year= 2006 |pmid= 16582099 |doi= 10.1093/nar/gkl105 }}
}}
{{refend}}
{{refend}}


Line 87: Line 35:


{{NLM content}}
{{NLM content}}
{{protein-stub}}
 
{{Transcription factors}}
{{Transcription factors|g3}}
 
[[Category:Transcription factors]]
[[Category:Transcription factors]]
{{WikiDoc Sources}}
 
{{gene-7-stub}}

Latest revision as of 20:57, 5 September 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Homeobox protein Hox-A3 is a protein that in humans is encoded by the HOXA3 gene.[1][2][3]

Function

In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. This gene is part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which may regulate gene expression, morphogenesis, and differentiation. Three transcript variants encoding two different isoforms have been found for this gene.[3]

During normal fetal development, HoxA3 is expressed in mesenchymal neural crest cells and endodermal cells found in the third pharyngeal pouch.[4] Expression of HoxA3 in these cells affects the proper formation of the thymus, thyroid, and parathyroid organs.[5][6] While the gene does not seem to affect the proliferation or migration of the pharyngeal neural crest cells, it does appear to trigger cellular differentiation events required to form these organs.[5] Knockout of HoxA3 leads to failure in forming the thymus (athymia) and parathyroid gland (aparthyroidism).[6] Mutant HoxA3 also causes a reduction in thyroid size. While the follicular and parafollicular cells still differentiate, their numbers are reduced and they are not evenly distributed throughout the gland.[5] Mutant HoxA3 models show similar phenotypes as those seen in DiGeorge’s Syndrome, and it is possible that the two are linked.[5]

Regulation

The HOXA3 gene is repressed by the microRNA miR-10a.[7]

See also

References

  1. McAlpine PJ, Shows TB (July 1990). "Nomenclature for human homeobox genes". Genomics. 7 (3): 460. doi:10.1016/0888-7543(90)90186-X. PMID 1973146.
  2. Scott MP (November 1992). "Vertebrate homeobox gene nomenclature". Cell. 71 (4): 551–3. doi:10.1016/0092-8674(92)90588-4. PMID 1358459.
  3. 3.0 3.1 "Entrez Gene: HOXA3 homeobox A3".
  4. Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R (October 1991). "A distinct Hox code for the branchial region of the vertebrate head". Nature. 353 (6347): 861–4. doi:10.1038/353861a0. PMID 1682814.
  5. 5.0 5.1 5.2 5.3 Manley NR, Capecchi MR (July 1995). "The role of Hoxa-3 in mouse thymus and thyroid development". Development. 121 (7): 1989–2003. PMID 7635047.
  6. 6.0 6.1 Chojnowski JL, Masuda K, Trau HA, Thomas K, Capecchi M, Manley NR (October 2014). "Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse". Development. 141 (19): 3697–708. doi:10.1242/dev.110833. PMC 4197593. PMID 25249461.
  7. Han L, Witmer PD, Casey E, Valle D, Sukumar S (August 2007). "DNA methylation regulates MicroRNA expression". Cancer Biology & Therapy. 6 (8): 1284–8. doi:10.4161/cbt.6.8.4486. PMID 17660710.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.