E2F4: Difference between revisions
mNo edit summary |
|||
Line 5: | Line 5: | ||
== Function == | == Function == | ||
"The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein binds to all three of the tumor suppressor proteins pRB, p107 and p130, but with higher affinity to the last two. It plays an important role in the suppression of proliferation-associated genes, and its gene mutation and increased expression may be associated with human cancer."<ref name=RefSeqJuly2008>{{ cite web | Gene ID: 1874 E2F transcription factor 4, "The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein binds to all three of the tumor suppressor proteins pRB, p107 and p130, but with higher affinity to the last two. It plays an important role in the suppression of proliferation-associated genes, and its gene mutation and increased expression may be associated with human cancer."<ref name=RefSeqJuly2008>{{ cite web | ||
|author=RefSeqJuly2008 | |author=RefSeqJuly2008 | ||
|title=E2F4 E2F transcription factor 4 [ Homo sapiens (human) ] | |title=E2F4 E2F transcription factor 4 [ Homo sapiens (human) ] |
Latest revision as of 03:36, 20 November 2019
Associate Editor(s)-in-Chief: Henry A. Hoff
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Transcription factor E2F4 is a protein that in humans is encoded by the E2F4 gene.[1][2]
Function
Gene ID: 1874 E2F transcription factor 4, "The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein binds to all three of the tumor suppressor proteins pRB, p107 and p130, but with higher affinity to the last two. It plays an important role in the suppression of proliferation-associated genes, and its gene mutation and increased expression may be associated with human cancer."[3]
Structure
The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids (Asp + Glu), and a tumor suppressor protein association domain which is embedded within the transactivation domain.
Interactions
E2F4 has been shown to interact with Smad3.[4]
Clinical significance
Colorectal cancers
"The AGC triplet repeat in the coding region of the E2F-4 gene, a member of the family, has been reported to be mutated in colorectal cancers with a microsatellite instability (MSI) phenotype. We found a wider range variation of the repeat number in DNAs from tumors, the corresponding normal mucosa, and healthy individuals. A total of 5 repeat variants, ranging from 8 to 17 AGC repeats, was detected in 6 (9.7%) of the 62 healthy individuals and 8 (8.9%) of the 90 normal DNAs of the patients. The wild-type 13 repeat was present in all of these individuals. The variation of the AGC repeat number may be a polymorphism. Further, loss of heterozygosity (LOH) at the E2F-4 locus in the tumor tissues of 2 (25%) of the 8 informative cases was detected."[5]
See also
References
- ↑ Ginsberg D, Vairo G, Chittenden T, Xiao ZX, Xu G, Wydner KL, DeCaprio JA, Lawrence JB, Livingston DM (Dec 1994). "E2F-4, a new member of the E2F transcription factor family, interacts with p107". Genes Dev. 8 (22): 2665–79. doi:10.1101/gad.8.22.2665. PMID 7958924.
- ↑ Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A, Weinberg RA (Apr 1995). "E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle". Proc Natl Acad Sci U S A. 92 (6): 2403–7. doi:10.1073/pnas.92.6.2403. PMC 42492. PMID 7892279.
- ↑ RefSeqJuly2008 (25 December 2016). "E2F4 E2F transcription factor 4 [ Homo sapiens (human) ]". U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information. Retrieved 2017-01-08.
- ↑ Chen CR, Kang Y, Siegel PM, Massagué J (July 2002). "E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression". Cell. 110 (1): 19–32. doi:10.1016/S0092-8674(02)00801-2. PMID 12150994.
- ↑ X. Zhong, H. Hemmi, J. Koike, K. Tsujita, H. Shimatake (March 2000). "Various AGC repeat numbers in the coding region of the human transcription factor gene E2F-4". Human Mutation. 15 (3): 296–7. doi:10.1002/(SICI)1098-1004(200003)15:3<296::AID-HUMU18>3.0.CO;2-X. PMID 10679953. Retrieved 2017-01-08.
Further reading
- Bandyopadhyay D, Timchenko N, Suwa T, et al. (2001). "The human melanocyte: a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells". Exp. Gerontol. 36 (8): 1265–75. doi:10.1016/S0531-5565(01)00098-5. PMID 11602203.
- Beijersbergen RL, Kerkhoven RM, Zhu L, et al. (1994). "E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo". Genes Dev. 8 (22): 2680–90. doi:10.1101/gad.8.22.2680. PMID 7958925.
- Xiao ZX, Ginsberg D, Ewen M, Livingston DM (1996). "Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-associated kinases". Proc. Natl. Acad. Sci. U.S.A. 93 (10): 4633–7. doi:10.1073/pnas.93.10.4633. PMC 39330. PMID 8643455.
- Moberg K, Starz MA, Lees JA (1996). "E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry". Mol. Cell. Biol. 16 (4): 1436–49. PMC 231128. PMID 8657117.
- Vidal M, Brachmann RK, Fattaey A, et al. (1996). "Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions". Proc. Natl. Acad. Sci. U.S.A. 93 (19): 10315–20. doi:10.1073/pnas.93.19.10315. PMC 38381. PMID 8816797.
- Williams CD, Linch DC, Sørensen TS, et al. (1997). "The predominant E2F complex in human primary haemopoietic cells and in AML blasts contains E2F-4, DP-1 and p130". Br. J. Haematol. 96 (4): 688–96. doi:10.1046/j.1365-2141.1997.d01-2086.x. PMID 9074408.
- Lindeman GJ, Gaubatz S, Livingston DM, Ginsberg D (1997). "The subcellular localization of E2F-4 is cell-cycle dependent". Proc. Natl. Acad. Sci. U.S.A. 94 (10): 5095–100. doi:10.1073/pnas.94.10.5095. PMC 24637. PMID 9144196.
- Wang H, Shao N, Ding QM, et al. (1997). "BRCA1 proteins are transported to the nucleus in the absence of serum and splice variants BRCA1a, BRCA1b are tyrosine phosphoproteins that associate with E2F, cyclins and cyclin dependent kinases". Oncogene. 15 (2): 143–57. doi:10.1038/sj.onc.1201252. PMID 9244350.
- Müller H, Moroni MC, Vigo E, et al. (1997). "Induction of S-phase entry by E2F transcription factors depends on their nuclear localization". Mol. Cell. Biol. 17 (9): 5508–20. PMC 232399. PMID 9271426.
- Pierce AM, Schneider-Broussard R, Philhower JL, Johnson DG (1998). "Differential activities of E2F family members: unique functions in regulating transcription". Mol. Carcinog. 22 (3): 190–8. doi:10.1002/(SICI)1098-2744(199807)22:3<190::AID-MC7>3.0.CO;2-P. PMID 9688145.
- Ferreira R, Magnaghi-Jaulin L, Robin P, et al. (1998). "The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase". Proc. Natl. Acad. Sci. U.S.A. 95 (18): 10493–8. doi:10.1073/pnas.95.18.10493. PMC 27922. PMID 9724731.
- Timchenko NA, Wilde M, Darlington GJ (1999). "C/EBPalpha regulates formation of S-phase-specific E2F-p107 complexes in livers of newborn mice". Mol. Cell. Biol. 19 (4): 2936–45. PMC 84088. PMID 10082561.
- Zheng N, Fraenkel E, Pabo CO, Pavletich NP (1999). "Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP". Genes Dev. 13 (6): 666–74. doi:10.1101/gad.13.6.666. PMC 316551. PMID 10090723.
- Furukawa Y, Iwase S, Kikuchi J, et al. (1999). "Transcriptional repression of the E2F-1 gene by interferon-alpha is mediated through induction of E2F-4/pRB and E2F-4/p130 complexes". Oncogene. 18 (11): 2003–14. doi:10.1038/sj.onc.1202500. PMID 10208422.
- Lam EW, Glassford J, van der Sman J, et al. (1999). "Modulation of E2F activity in primary mouse B cells following stimulation via surface IgM and CD40 receptors". Eur. J. Immunol. 29 (10): 3380–9. doi:10.1002/(SICI)1521-4141(199910)29:10<3380::AID-IMMU3380>3.0.CO;2-C. PMID 10540350.
- Zhong X, Hemmi H, Koike J, et al. (2000). "Various AGC repeat numbers in the coding region of the human transcription factor gene E2F-4". Hum. Mutat. 15 (3): 296–7. doi:10.1002/(SICI)1098-1004(200003)15:3<296::AID-HUMU18>3.0.CO;2-X. PMID 10679953.
- Takahashi Y, Rayman JB, Dynlacht BD (2000). "Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression". Genes Dev. 14 (7): 804–16. doi:10.1101/gad.14.7.804. PMC 316494. PMID 10766737.
- Schwemmle S, Pfeifer GP (2000). "Genomic structure and mutation screening of the E2F4 gene in human tumors". Int. J. Cancer. 86 (5): 672–7. doi:10.1002/(SICI)1097-0215(20000601)86:5<672::AID-IJC11>3.0.CO;2-X. PMID 10797289.
External links
- E2F4+protein,+human at the US National Library of Medicine Medical Subject Headings (MeSH)
- FactorBook E2F4
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
This article on a gene on human chromosome 16 is a stub. You can help Wikipedia by expanding it. |