ARID2: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''AT-rich interactive domain-containing protein 2''' ('''ARID2''') is a [[protein]] that in humans is encoded by the ''ARID2'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ARID2 AT rich interactive domain 2 (ARID, RFX-like)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=196528| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = AT rich interactive domain 2 (ARID, RFX-like)
| HGNCid = 18037
| Symbol = ARID2
| AltSymbols =; p200; BAF200; DKFZp686G052; DKFZp779P0222; FLJ30619; KIAA1557
| OMIM = 609539
| ECnumber = 
| Homologene = 14601
| MGIid = 1924294
| GeneAtlas_image1 = PBB_GE_ARID2_gnf1h01782_at_tn.png
| GeneAtlas_image2 = PBB_GE_ARID2_gnf1h01783_at_tn.png
| Function = {{GNF_GO|id=GO:0003677 |text = DNA binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}}
| Component = {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0016568 |text = chromatin modification}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 196528
    | Hs_Ensembl = ENSG00000189079
    | Hs_RefseqProtein = NP_689854
    | Hs_RefseqmRNA = NM_152641
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 12
    | Hs_GenLoc_start = 44409887
    | Hs_GenLoc_end = 44588086
    | Hs_Uniprot = Q68CP9
    | Mm_EntrezGene = 77044
    | Mm_Ensembl = ENSMUSG00000033237
    | Mm_RefseqmRNA = NM_175251
    | Mm_RefseqProtein = NP_780460
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 15
    | Mm_GenLoc_start = 96115729
    | Mm_GenLoc_end = 96230125
    | Mm_Uniprot = 
  }}
}}
'''AT rich interactive domain 2 (ARID, RFX-like)''', also known as '''ARID2''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ARID2 AT rich interactive domain 2 (ARID, RFX-like)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=196528| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
ARID2 is a [[protein subunit|subunit]] of the PBAF chromatin-remodeling complex, which facilitates ligand-dependent transcriptional [[Activator (genetics)|
{{PBB_Summary
activation]] by nuclear receptors.<ref name="entrez" />
| section_title =
| summary_text = ARID2 is a subunit of the PBAF chromatin-remodeling complex (see BAF180; MIM 606083), which facilitates ligand-dependent transcriptional activation by nuclear receptors (Yan et al., 2005).[supplied by OMIM]<ref name="entrez">{{cite web | title = Entrez Gene: ARID2 AT rich interactive domain 2 (ARID, RFX-like)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=196528| accessdate = }}</ref>
}}


==References==
==Structure==
{{reflist|2}}
The ARID2 protein contains two [[conserved sequence|conserved]] [[C-terminal]] C<small>2</small>H<small>2</small> [[zinc finger]]s motifs, a region rich in the [[amino acid]] residues [[proline]] and [[glutamine]], a RFX (regulatory factor X)-type winged-helix [[DNA-binding domain]], and a conserved [[N-terminal]] [[Adenine|A]][[Thymine|T]]-rich DNA interaction domain—the last domain for which the protein is named.<ref name="Zhao 2011"/>
==Further reading==
 
{{refbegin | 2}}
==Clinical significance==
{{PBB_Further_reading
Mutation studies have revealed ARID2 to be a significant [[tumor suppressor]] in many cancer subtypes. ''ARID2'' mutations are prevalent in [[hepatocellular carcinoma]]<ref>{{cite journal | vauthors = Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJ, Velculescu VE, Wang L, Zhou S, Vogelstein B, Hruban RH, Papadopoulos N, Cai J, Torbenson MS, Kinzler KW | title = Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma | journal = Nature Genetics | volume = 43 | issue = 9 | pages = 828–9 | date = Sep 2011 | pmid = 21822264 | pmc = 3163746 | doi = 10.1038/ng.903 }}</ref> and [[melanoma]].<ref>{{cite journal | vauthors = Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L | title = A landscape of driver mutations in melanoma | journal = Cell | volume = 150 | issue = 2 | pages = 251–63 | date = Jul 2012 | pmid = 22817889 | pmc = 3600117 | doi = 10.1016/j.cell.2012.06.024 }}</ref><ref>{{cite journal | vauthors = Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R | title = Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma | journal = Nature Genetics | volume = 44 | issue = 9 | pages = 1006–14 | date = Sep 2012 | pmid = 22842228 | pmc = 3432702 | doi = 10.1038/ng.2359 }}</ref> Mutations are present in a smaller but significant fraction in a wide range of other tumors.<ref>{{cite journal | vauthors = Shain AH, Pollack JR | title = The spectrum of SWI/SNF mutations, ubiquitous in human cancers | journal = PLOS ONE | volume = 8 | issue = 1 | pages = e55119 | year = 2013 | pmid = 23355908 | pmc = 3552954 | doi = 10.1371/journal.pone.0055119 }}</ref> ''ARID2'' mutations are enriched in [[hepatitis C virus]]-associated hepatocellular carcinoma in the US and European patient populations compared with the overall [[mutation frequency]].<ref name="Zhao 2011">{{cite journal | vauthors = Zhao H, Wang J, Han Y, Huang Z, Ying J, Bi X, Zhao J, Fang Y, Zhou H, Zhou J, Li Z, Zhang Y, Yang X, Yan T, Wang L, Torbenson MS, Cai J | title = ARID2: a new tumor suppressor gene in hepatocellular carcinoma | journal = Oncotarget | volume = 2 | issue = 11 | pages = 886–91 | date = Nov 2011 | pmid = 22095441 | pmc = 3259997 | doi=10.18632/oncotarget.355}}</ref>
| citations =
 
*{{cite journal  | author=Martens JA, Winston F |title=Recent advances in understanding chromatin remodeling by Swi/Snf complexes. |journal=Curr. Opin. Genet. Dev. |volume=13 |issue= 2 |pages= 136-42 |year= 2003 |pmid= 12672490 |doi=  }}
==Model organisms==
*{{cite journal  | author=Nagase T, Kikuno R, Nakayama M, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. |journal=DNA Res. |volume=7 |issue= 4 |pages= 273-81 |year= 2001 |pmid= 10997877 |doi=  }}
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
|+ ''Arid2'' knockout mouse phenotype
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
|-
*{{cite journal | author=Mohrmann L, Langenberg K, Krijgsveld J, ''et al.'' |title=Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. |journal=Mol. Cell. Biol. |volume=24 |issue= 8 |pages= 3077-88 |year= 2004 |pmid= 15060132 |doi= }}
! Characteristic!! Phenotype
*{{cite journal | author=Brandenberger R, Wei H, Zhang S, ''et al.'' |title=Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. |journal=Nat. Biotechnol. |volume=22 |issue= 6 |pages= 707-16 |year= 2005 |pmid= 15146197 |doi= 10.1038/nbt971 }}
|-
*{{cite journal  | author=Diederichs S, Bäumer N, Ji P, ''et al.'' |title=Identification of interaction partners and substrates of the cyclin A1-CDK2 complex. |journal=J. Biol. Chem. |volume=279 |issue= 32 |pages= 33727-41 |year= 2004 |pmid= 15159402 |doi= 10.1074/jbc.M401708200 }}
| [[Homozygote]] viability || bgcolor="#C40000"|Abnormal
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
|-
*{{cite journal  | author=Patsialou A, Wilsker D, Moran E |title=DNA-binding properties of ARID family proteins. |journal=Nucleic Acids Res. |volume=33 |issue= 1 |pages= 66-80 |year= 2005 |pmid= 15640446 |doi= 10.1093/nar/gki145 }}
| [[Recessive]] lethal study || bgcolor="#C40000"|Abnormal
*{{cite journal  | author=Wilsker D, Probst L, Wain HM, ''et al.'' |title=Nomenclature of the ARID family of DNA-binding proteins. |journal=Genomics |volume=86 |issue= 2 |pages= 242-51 |year= 2005 |pmid= 15922553 |doi= 10.1016/j.ygeno.2005.03.013 }}
|-
*{{cite journal  | author=Yan Z, Cui K, Murray DM, ''et al.'' |title=PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. |journal=Genes Dev. |volume=19 |issue= 14 |pages= 1662-7 |year= 2005 |pmid= 15985610 |doi= 10.1101/gad.1323805 }}
| Fertility || bgcolor="#488ED3"|Normal
*{{cite journal  | author=Otsuki T, Ota T, Nishikawa T, ''et al.'' |title=Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. |journal=DNA Res. |volume=12 |issue= 2 |pages= 117-26 |year= 2007 |pmid= 16303743 |doi= 10.1093/dnares/12.2.117 }}
|-
*{{cite journal  | author=Zhang X, Azhar G, Zhong Y, Wei JY |title=Zipzap/p200 is a novel zinc finger protein contributing to cardiac gene regulation. |journal=Biochem. Biophys. Res. Commun. |volume=346 |issue= 3 |pages= 794-801 |year= 2006 |pmid= 16782067 |doi= 10.1016/j.bbrc.2006.05.211 }}
| Body weight || bgcolor="#488ED3"|Normal
}}
|-
| [[Open Field (animal test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Peripheral blood lymphocyte]]s || bgcolor="#488ED3"|Normal
|-
| [[Micronucleus test]] || bgcolor="#488ED3"|Normal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| Skin Histopathology || bgcolor="#488ED3"|Normal
|-
| Brain histopathology || bgcolor="#488ED3"|Normal
|-
| Eye Histopathology || bgcolor="#488ED3"|Normal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MAEV/salmonella-challenge/ |title=''Salmonella'' infection data for Arid2 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MAEV/citrobacter-challenge/ |title=''Citrobacter'' infection data for Arid2 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal| doi = 10.1111/j.1755-3768.2010.4142.x |title=The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice |year=2010 |author=Gerdin AK |journal=Acta Ophthalmologica |volume=88 |issue=S248}}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
The ''ARID2'' gene, located on [[chromosome 12]]q in humans, consists of 21 [[exons]]; [[ortholog]]s are known from mouse, rat, cattle, chicken, and mosquito.<ref name="Zhao 2011"/> [[Model organism]]s have been used in the study of ARID2 function. A conditional [[knockout mouse]] line, called ''Arid2<sup>tm1a(EUCOMM)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Arid2 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4433303 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program, a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = Jun 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = Jun 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = Jan 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref>
 
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal | vauthors = van der Weyden L, White JK, Adams DJ, Logan DW | title = The mouse genetics toolkit: revealing function and mechanism | journal = Genome Biology | volume = 12 | issue = 6 | pages = 224 | year = 2011 | pmid = 21722353 | pmc = 3218837 | doi = 10.1186/gb-2011-12-6-224 }}</ref> Twenty six tests were carried out on [[mutant]] adult mice and two significant abnormalities were observed.<ref name="mgp_reference" />  A [[recessive]] lethal study found fewer [[homozygous]] [[mutant]] embryos during gestation than predicted by [[Mendelian ratio]]. In a second study, no homozygous mutant animals survived until [[weaning]]. The remaining tests were carried out on [[heterozygous]] mutant adult mice; these displayed no abnormalities.<ref name="mgp_reference" />
{{Clear}}
 
== References ==
{{reflist|35em}}
 
== Further reading ==
{{refbegin|35em}}
* {{cite journal | vauthors = Martens JA, Winston F | title = Recent advances in understanding chromatin remodeling by Swi/Snf complexes | journal = Current Opinion in Genetics & Development | volume = 13 | issue = 2 | pages = 136–42 | date = Apr 2003 | pmid = 12672490 | doi = 10.1016/S0959-437X(03)00022-4 }}
* {{cite journal | vauthors = Nagase T, Kikuno R, Nakayama M, Hirosawa M, Ohara O | title = Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro | journal = DNA Research | volume = 7 | issue = 4 | pages = 273–81 | date = Aug 2000 | pmid = 10997877 | doi = 10.1093/dnares/7.4.271 }}
* {{cite journal | vauthors = Mohrmann L, Langenberg K, Krijgsveld J, Kal AJ, Heck AJ, Verrijzer CP | title = Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes | journal = Molecular and Cellular Biology | volume = 24 | issue = 8 | pages = 3077–88 | date = Apr 2004 | pmid = 15060132 | pmc = 381637 | doi = 10.1128/MCB.24.8.3077-3088.2004 }}
* {{cite journal | vauthors = Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW | title = Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation | journal = Nature Biotechnology | volume = 22 | issue = 6 | pages = 707–16 | date = Jun 2004 | pmid = 15146197 | doi = 10.1038/nbt971 }}
* {{cite journal | vauthors = Diederichs S, Bäumer N, Ji P, Metzelder SK, Idos GE, Cauvet T, Wang W, Möller M, Pierschalski S, Gromoll J, Schrader MG, Koeffler HP, Berdel WE, Serve H, Müller-Tidow C | title = Identification of interaction partners and substrates of the cyclin A1-CDK2 complex | journal = The Journal of Biological Chemistry | volume = 279 | issue = 32 | pages = 33727–41 | date = Aug 2004 | pmid = 15159402 | doi = 10.1074/jbc.M401708200 }}
* {{cite journal | vauthors = Patsialou A, Wilsker D, Moran E | title = DNA-binding properties of ARID family proteins | journal = Nucleic Acids Research | volume = 33 | issue = 1 | pages = 66–80 | year = 2005 | pmid = 15640446 | pmc = 546134 | doi = 10.1093/nar/gki145 }}
* {{cite journal | vauthors = Wilsker D, Probst L, Wain HM, Maltais L, Tucker PW, Moran E | title = Nomenclature of the ARID family of DNA-binding proteins | journal = Genomics | volume = 86 | issue = 2 | pages = 242–51 | date = Aug 2005 | pmid = 15922553 | doi = 10.1016/j.ygeno.2005.03.013 }}
* {{cite journal | vauthors = Yan Z, Cui K, Murray DM, Ling C, Xue Y, Gerstein A, Parsons R, Zhao K, Wang W | title = PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes | journal = Genes & Development | volume = 19 | issue = 14 | pages = 1662–7 | date = Jul 2005 | pmid = 15985610 | pmc = 1176002 | doi = 10.1101/gad.1323805 }}
* {{cite journal | vauthors = Zhang X, Azhar G, Zhong Y, Wei JY | title = Zipzap/p200 is a novel zinc finger protein contributing to cardiac gene regulation | journal = Biochemical and Biophysical Research Communications | volume = 346 | issue = 3 | pages = 794–801 | date = Aug 2006 | pmid = 16782067 | doi = 10.1016/j.bbrc.2006.05.211 }}
{{refend}}
{{refend}}


== External links ==
== External links ==
* {{MeshName|ARID2+protein,+human}}
* {{MeshName|ARID2+protein,+human}}
* {{UCSC gene info|ARID2}}


{{NLM content}}
{{Transcription factors|g0}}


{{protein-stub}}
{{NLM content}}
{{Transcription factors}}
[[Category:Transcription factors]]
[[Category:Transcription factors]]
{{WikiDoc Sources}}
[[Category:Genes mutated in mice]]

Latest revision as of 18:14, 29 August 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

AT-rich interactive domain-containing protein 2 (ARID2) is a protein that in humans is encoded by the ARID2 gene.[1]

Function

ARID2 is a subunit of the PBAF chromatin-remodeling complex, which facilitates ligand-dependent transcriptional activation by nuclear receptors.[1]

Structure

The ARID2 protein contains two conserved C-terminal C2H2 zinc fingers motifs, a region rich in the amino acid residues proline and glutamine, a RFX (regulatory factor X)-type winged-helix DNA-binding domain, and a conserved N-terminal AT-rich DNA interaction domain—the last domain for which the protein is named.[2]

Clinical significance

Mutation studies have revealed ARID2 to be a significant tumor suppressor in many cancer subtypes. ARID2 mutations are prevalent in hepatocellular carcinoma[3] and melanoma.[4][5] Mutations are present in a smaller but significant fraction in a wide range of other tumors.[6] ARID2 mutations are enriched in hepatitis C virus-associated hepatocellular carcinoma in the US and European patient populations compared with the overall mutation frequency.[2]

Model organisms

The ARID2 gene, located on chromosome 12q in humans, consists of 21 exons; orthologs are known from mouse, rat, cattle, chicken, and mosquito.[2] Model organisms have been used in the study of ARID2 function. A conditional knockout mouse line, called Arid2tm1a(EUCOMM)Wtsi[11][12] was generated as part of the International Knockout Mouse Consortium program, a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[13][14][15]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[9][16] Twenty six tests were carried out on mutant adult mice and two significant abnormalities were observed.[9] A recessive lethal study found fewer homozygous mutant embryos during gestation than predicted by Mendelian ratio. In a second study, no homozygous mutant animals survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice; these displayed no abnormalities.[9]

References

  1. 1.0 1.1 "Entrez Gene: ARID2 AT rich interactive domain 2 (ARID, RFX-like)".
  2. 2.0 2.1 2.2 Zhao H, Wang J, Han Y, Huang Z, Ying J, Bi X, Zhao J, Fang Y, Zhou H, Zhou J, Li Z, Zhang Y, Yang X, Yan T, Wang L, Torbenson MS, Cai J (Nov 2011). "ARID2: a new tumor suppressor gene in hepatocellular carcinoma". Oncotarget. 2 (11): 886–91. doi:10.18632/oncotarget.355. PMC 3259997. PMID 22095441.
  3. Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJ, Velculescu VE, Wang L, Zhou S, Vogelstein B, Hruban RH, Papadopoulos N, Cai J, Torbenson MS, Kinzler KW (Sep 2011). "Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma". Nature Genetics. 43 (9): 828–9. doi:10.1038/ng.903. PMC 3163746. PMID 21822264.
  4. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (Jul 2012). "A landscape of driver mutations in melanoma". Cell. 150 (2): 251–63. doi:10.1016/j.cell.2012.06.024. PMC 3600117. PMID 22817889.
  5. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R (Sep 2012). "Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma". Nature Genetics. 44 (9): 1006–14. doi:10.1038/ng.2359. PMC 3432702. PMID 22842228.
  6. Shain AH, Pollack JR (2013). "The spectrum of SWI/SNF mutations, ubiquitous in human cancers". PLOS ONE. 8 (1): e55119. doi:10.1371/journal.pone.0055119. PMC 3552954. PMID 23355908.
  7. "Salmonella infection data for Arid2". Wellcome Trust Sanger Institute.
  8. "Citrobacter infection data for Arid2". Wellcome Trust Sanger Institute.
  9. 9.0 9.1 9.2 9.3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x.
  10. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  11. "International Knockout Mouse Consortium".
  12. "Mouse Genome Informatics".
  13. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  14. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  15. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  16. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.