Nuclear receptor related-1 protein: Difference between revisions
m (Bot: HTTP→HTTPS) |
imported>GreenC bot (Remove 1 stray access-date. (GreenC bot job #5)) |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | {{Infobox_gene}} | ||
The '''Nuclear receptor related 1 protein''' ('''NURR1''') also known as '''NR4A2''' (nuclear receptor subfamily 4, group A, member 2) is a [[protein]] that in humans is encoded by the ''NR4A2'' [[gene]].<ref name="pmid7706727">{{cite journal | vauthors = Okabe T, Takayanagi R, Imasaki K, Haji M, Nawata H, Watanabe T | title = cDNA cloning of a NGFI-B/nur77-related transcription factor from an apoptotic human T cell line | journal = Journal of Immunology | volume = 154 | issue = 8 | pages = 3871–9 | date = | The '''Nuclear receptor related 1 protein''' ('''NURR1''') also known as '''NR4A2''' (nuclear receptor subfamily 4, group A, member 2) is a [[protein]] that in humans is encoded by the ''NR4A2'' [[gene]].<ref name="pmid7706727">{{cite journal | vauthors = Okabe T, Takayanagi R, Imasaki K, Haji M, Nawata H, Watanabe T | title = cDNA cloning of a NGFI-B/nur77-related transcription factor from an apoptotic human T cell line | journal = Journal of Immunology | volume = 154 | issue = 8 | pages = 3871–9 | date = April 1995 | pmid = 7706727 | doi = | url = http://www.jimmunol.org/cgi/content/abstract/154/8/3871 }}</ref> NURR1 is a member of the [[nuclear receptor]] family of [[intracellular]] [[transcription factor]]s. | ||
NURR1 plays a key role in the maintenance of the [[dopaminergic]] system of the brain.<ref name="pmid17020917">{{cite journal | vauthors = Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P | title = Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1 | journal = Nucleic Acids Research | volume = 34 | issue = 19 | pages = 5515–27 | year = 2006 | pmid = 17020917 | pmc = 1636490 | doi = 10.1093/nar/gkl712 }}</ref> Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including [[Parkinson's disease]], [[schizophrenia]], and [[bipolar affective disorder|manic depression]]. Misregulation of this gene may be associated with [[rheumatoid arthritis]]. Four transcript variants encoding four distinct isoforms have been identified for this gene. Additional alternate splice variants may exist, but their full-length nature has not been determined.<ref name="entrez">{{cite web | title = Entrez Gene: NR4A2 nuclear receptor subfamily 4, group A, member 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4929| accessdate = }}</ref> | NURR1 plays a key role in the maintenance of the [[dopaminergic]] system of the brain.<ref name="pmid17020917">{{cite journal | vauthors = Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P | title = Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1 | journal = Nucleic Acids Research | volume = 34 | issue = 19 | pages = 5515–27 | year = 2006 | pmid = 17020917 | pmc = 1636490 | doi = 10.1093/nar/gkl712 }}</ref> Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including [[Parkinson's disease]], [[schizophrenia]], and [[bipolar affective disorder|manic depression]]. Misregulation of this gene may be associated with [[rheumatoid arthritis]]. Four transcript variants encoding four distinct isoforms have been identified for this gene. Additional alternate splice variants may exist, but their full-length nature has not been determined.<ref name="entrez">{{cite web | title = Entrez Gene: NR4A2 nuclear receptor subfamily 4, group A, member 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4929| accessdate = }}</ref> | ||
This protein is thought to be critical to development of the dopamine phenotype in the midbrain, as mice without NURR1 are lacking expression of this phenotype. This is further confirmed by studies showing that when forcing NURR1 expression in naïve precursor cells, there is complete dopamine phenotype gene expression. <ref name="epigenetics">{{cite journal|last1=Yi|first1=Sang-Hoon|last2=He|first2=Xi-Biao|last3=Rhee|first3=Yong-Hee|last4=Park|first4=Chang-Hwan|last5=Takizawa|first5=Takumi|last6=Nakashima|first6=Kinichi|last7=Lee|first7=Sang-Hun|title=Foxa2 Acts as a Co-activator Potentiating Expression of the Nurr1-induced DA Phenotype via Epigenetic Regulation.|journal=Development|date=15 February 2014 | This protein is thought to be critical to development of the dopamine phenotype in the midbrain, as mice without NURR1 are lacking expression of this phenotype. This is further confirmed by studies showing that when forcing NURR1 expression in naïve precursor cells, there is complete dopamine phenotype gene expression.<ref name="epigenetics">{{cite journal|last1=Yi|first1=Sang-Hoon|last2=He|first2=Xi-Biao|last3=Rhee|first3=Yong-Hee|last4=Park|first4=Chang-Hwan|last5=Takizawa|first5=Takumi|last6=Nakashima|first6=Kinichi|last7=Lee|first7=Sang-Hun|title=Foxa2 Acts as a Co-activator Potentiating Expression of the Nurr1-induced DA Phenotype via Epigenetic Regulation.|journal=Development|date=15 February 2014}}</ref> | ||
While NURR1 is a key protein, there are other factors required as research shows that solely expressing NURR1 fails to stimulate this phenotypic gene expression. One of these suggested factors is winged-helix transcription factor 2 (Foxa2). Studies have found these two factors to be within the same region of developing dopaminergic neurons, both of these factors were present in order to have expression for the dopamine phenotype. | While NURR1 is a key protein, there are other factors required as research shows that solely expressing NURR1 fails to stimulate this phenotypic gene expression. One of these suggested factors is winged-helix transcription factor 2 (Foxa2). Studies have found these two factors to be within the same region of developing dopaminergic neurons, both of these factors were present in order to have expression for the dopamine phenotype. | ||
<ref name="epigenetics" /> | <ref name="epigenetics" /> | ||
==Nurr1 and Inflammation== | ==Nurr1 and Inflammation== | ||
Research has been conducted on Nurr1’s role in inflammation, and may provide important information in treating disorders caused by dopaminergic neuron disease. Inflammation in the CNS can result from activated microglia (macrophage analogs for the central nervous system) and other pro-inflammatory factors, such as bacterial lipopolysaccharide (LPS). LPS binds to toll-like receptors (TLR), which induces inflammatory gene expression by promoting signal-dependent transcription factors. To determine which cells are dopaminergic, experiments measured the enzyme tyrosine hydroxylase (TH), which is needed for dopamine synthesis. It has been shown that Nurr1 protects dopaminergic neurons from LPS-induced inflammation, by reducing inflammatory gene expression in microglia and astrocytes. When a short hairpin for Nurr1 was expressed in microglia and astrocytes, these cells produced inflammatory mediators, such as TNFa, NO synthase and IL-1β, supporting the conclusion that reduced Nurr1 promotes inflammation and leads to cell death of dopaminergic neurons. Nurr1 interacts with the transcription factor complex NF-κB-p65 on the inflammatory gene promoters. However, Nurr1 is dependent on other factors to be able to participate in these interactions. Nurr1 needs to be sumoylated and its co-regulating factor, glycogen synthase kinase 3, needs to be phosphorylated for these interactions to occur. Sumolyated Nurr1 recruits CoREST, a complex made of several proteins that assembles chromatin-modifying enzymes. The Nurr1/CoREST complex inhibits transcription of inflammatory genes.<ref>{{cite journal | vauthors = Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK | title = A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death | journal = Cell | volume = 137 | issue = 1 | pages = 47–59 | date = | Research has been conducted on Nurr1’s role in inflammation, and may provide important information in treating disorders caused by dopaminergic neuron disease. Inflammation in the CNS can result from activated microglia (macrophage analogs for the central nervous system) and other pro-inflammatory factors, such as bacterial lipopolysaccharide (LPS). LPS binds to toll-like receptors (TLR), which induces inflammatory gene expression by promoting signal-dependent transcription factors. To determine which cells are dopaminergic, experiments measured the enzyme tyrosine hydroxylase (TH), which is needed for dopamine synthesis. It has been shown that Nurr1 protects dopaminergic neurons from LPS-induced inflammation, by reducing inflammatory gene expression in microglia and astrocytes. When a short hairpin for Nurr1 was expressed in microglia and astrocytes, these cells produced inflammatory mediators, such as TNFa, NO synthase and IL-1β, supporting the conclusion that reduced Nurr1 promotes inflammation and leads to cell death of dopaminergic neurons. Nurr1 interacts with the transcription factor complex NF-κB-p65 on the inflammatory gene promoters. However, Nurr1 is dependent on other factors to be able to participate in these interactions. Nurr1 needs to be sumoylated and its co-regulating factor, glycogen synthase kinase 3, needs to be phosphorylated for these interactions to occur. Sumolyated Nurr1 recruits CoREST, a complex made of several proteins that assembles chromatin-modifying enzymes. The Nurr1/CoREST complex inhibits transcription of inflammatory genes.<ref>{{cite journal | vauthors = Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK | title = A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death | journal = Cell | volume = 137 | issue = 1 | pages = 47–59 | date = April 2009 | pmid = 19345186 | pmc = 2754279 | doi = 10.1016/j.cell.2009.01.038 }}</ref> | ||
==Structure== | ==Structure== | ||
One investigation conducted research on the structure and found that Nurr1 does not contain a ligand-binding cavity but a patch filled with hydrophobic side chains. Non-polar amino acid residues of Nurr1’s co-regulators, SMRT and NCoR, bind to this hydrophobic patch. Analysis of tertiary structure has shown that the binding surface of the ligand-binding domain is located on the grooves of the 11th and 12th alpha helices. This study also found essential structural components of this hydrophobic patch, to be the three amino acids residues, F574, F592, L593; mutation of any these three inhibits LBD activity.<ref>{{cite journal | vauthors = Codina A, Benoit G, Gooch JT, Neuhaus D, Perlmann T, Schwabe JW | title = Identification of a novel co-regulator interaction surface on the ligand binding domain of Nurr1 using NMR footprinting | journal = The Journal of Biological Chemistry | volume = 279 | issue = 51 | pages = 53338–45 | date = | One investigation conducted research on the structure and found that Nurr1 does not contain a ligand-binding cavity but a patch filled with hydrophobic side chains. Non-polar amino acid residues of Nurr1’s co-regulators, SMRT and NCoR, bind to this hydrophobic patch. Analysis of tertiary structure has shown that the binding surface of the ligand-binding domain is located on the grooves of the 11th and 12th alpha helices. This study also found essential structural components of this hydrophobic patch, to be the three amino acids residues, F574, F592, L593; mutation of any these three inhibits LBD activity.<ref>{{cite journal | vauthors = Codina A, Benoit G, Gooch JT, Neuhaus D, Perlmann T, Schwabe JW | title = Identification of a novel co-regulator interaction surface on the ligand binding domain of Nurr1 using NMR footprinting | journal = The Journal of Biological Chemistry | volume = 279 | issue = 51 | pages = 53338–45 | date = December 2004 | pmid = 15456745 | doi = 10.1074/jbc.M409096200 }}</ref> | ||
==Applications== | ==Applications== | ||
Nurr1 induces [[tyrosine hydroxylase]] (TH) expression, which eventually leads to differentiation into dopaminergic neurons. Nurr1 has been demonstrated to induce differentiation in CNS precursor cells in vitro but they require additional factors to reach full maturity and dopaminergic differentiation.<ref name="pmid12787064">{{cite journal | vauthors = Kim JY, Koh HC, Lee JY, Chang MY, Kim YC, Chung HY, Son H, Lee YS, Studer L, McKay R, Lee SH | title = Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression | journal = Journal of Neurochemistry | volume = 85 | issue = 6 | pages = 1443–54 | date = | Nurr1 induces [[tyrosine hydroxylase]] (TH) expression, which eventually leads to differentiation into dopaminergic neurons. Nurr1 has been demonstrated to induce differentiation in CNS precursor cells in vitro but they require additional factors to reach full maturity and dopaminergic differentiation.<ref name="pmid12787064">{{cite journal | vauthors = Kim JY, Koh HC, Lee JY, Chang MY, Kim YC, Chung HY, Son H, Lee YS, Studer L, McKay R, Lee SH | title = Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression | journal = Journal of Neurochemistry | volume = 85 | issue = 6 | pages = 1443–54 | date = June 2003 | pmid = 12787064 | doi = 10.1046/j.1471-4159.2003.01780.x }}</ref> Therefore, Nurr1 modulation may be promising for generation of dopaminergic neurons for Parkinson’s disease research, yet implantation of these induced cells as therapy treatments, has had limited results. | ||
== Knockout Studies == | == Knockout Studies == | ||
Studies have shown that heterozygous knockout mice for the NURR1 gene demonstrate reduced dopamine release. Initially this was compensated for by a decrease in the rate of dopamine reuptake; however, over time this reuptake could not make up for the reduced amount of dopamine being released. Coupled with the loss of dopamine receptor neurons, this can result in the onset of symptoms for Parkinson’s Disease. <ref>{{cite journal| | Studies have shown that heterozygous knockout mice for the NURR1 gene demonstrate reduced dopamine release. Initially this was compensated for by a decrease in the rate of dopamine reuptake; however, over time this reuptake could not make up for the reduced amount of dopamine being released. Coupled with the loss of dopamine receptor neurons, this can result in the onset of symptoms for Parkinson’s Disease.<ref>{{cite journal | vauthors = Zhang L, Le W, Xie W, Dani JA | title = Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson's disease | journal = Neurobiology of Aging | volume = 33 | issue = 5 | pages = 1001.e7-16 | date = May 2012 | pmid = 21531044 | doi = 10.1016/j.neurobiolaging.2011.03.022 | pmc=3155628}}</ref> | ||
== Interactions == | == Interactions == | ||
Nuclear receptor related 1 protein has been shown to [[Protein-protein interaction|interact]] with: | Nuclear receptor related 1 protein has been shown to [[Protein-protein interaction|interact]] with: | ||
* [[Beta-catenin]],<ref name="pmid27045591">{{cite journal | vauthors = Zhang L, Cen L, Qu S, Wei L, Mo M, Feng J, Sun C, Xiao Y, Luo Q, Li S, Yang X, Xu P | title = Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction | journal = PLOS | * [[Beta-catenin]],<ref name="pmid27045591">{{cite journal | vauthors = Zhang L, Cen L, Qu S, Wei L, Mo M, Feng J, Sun C, Xiao Y, Luo Q, Li S, Yang X, Xu P | title = Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction | journal = PLOS One | volume = 11 | issue = 4 | pages = e0152931 | date = Apr 2016 | pmid = 27045591 | pmc = 4821554 | doi = 10.1371/journal.pone.0152931 }}</ref> | ||
* [[PITX3|Pituitary homeobox 3]],<ref>{{cite journal | vauthors = Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP, Smidt MP | title = Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression | journal = Development | volume = 136 | issue = 4 | pages = 531–40 | date = February 2009 | pmid = 19144721 | doi = 10.1242/dev.029769 }}</ref> | * [[PITX3|Pituitary homeobox 3]],<ref>{{cite journal | vauthors = Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP, Smidt MP | title = Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression | journal = Development | volume = 136 | issue = 4 | pages = 531–40 | date = February 2009 | pmid = 19144721 | doi = 10.1242/dev.029769 }}</ref> | ||
* [[Retinoic acid receptor alpha]],<ref name="pmid7705655">{{cite journal | vauthors = Perlmann T, Jansson L | title = A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1 | journal = Genes & Development | volume = 9 | issue = 7 | pages = 769–82 | date = | * [[Retinoic acid receptor alpha]],<ref name="pmid7705655">{{cite journal | vauthors = Perlmann T, Jansson L | title = A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1 | journal = Genes & Development | volume = 9 | issue = 7 | pages = 769–82 | date = April 1995 | pmid = 7705655 | doi = 10.1101/gad.9.7.769 }}</ref> and | ||
* [[Retinoic acid receptor beta]].<ref name=pmid7705655/> | * [[Retinoic acid receptor beta]].<ref name=pmid7705655/> | ||
{{clear}} | {{clear}} | ||
Line 34: | Line 35: | ||
== Further reading == | == Further reading == | ||
{{refbegin|33em}} | {{refbegin|33em}} | ||
* {{cite journal | vauthors = Le W, Appel SH | title = Mutant genes responsible for Parkinson's disease | journal = Current Opinion in Pharmacology | volume = 4 | issue = 1 | pages = 79–84 | date = | * {{cite journal | vauthors = Le W, Appel SH | title = Mutant genes responsible for Parkinson's disease | journal = Current Opinion in Pharmacology | volume = 4 | issue = 1 | pages = 79–84 | date = February 2004 | pmid = 15018843 | doi = 10.1016/j.coph.2003.09.005 }} | ||
* {{cite journal | vauthors = Wedler B, Wüstenberg PW, Naumann G | title = [Treatment of hypertonus in diabetes mellitus] | journal = Zeitschrift | * {{cite journal | vauthors = Wedler B, Wüstenberg PW, Naumann G | title = [Treatment of hypertonus in diabetes mellitus] | journal = Zeitschrift Fur Die Gesamte Innere Medizin Und Ihre Grenzgebiete | volume = 30 | issue = 13 | pages = 437–42 | date = July 1975 | pmid = 4929 | doi = }} | ||
* {{cite journal | vauthors = Perlmann T, Jansson L | title = A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1 | journal = Genes & Development | volume = 9 | issue = 7 | pages = 769–82 | date = | * {{cite journal | vauthors = Perlmann T, Jansson L | title = A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1 | journal = Genes & Development | volume = 9 | issue = 7 | pages = 769–82 | date = April 1995 | pmid = 7705655 | doi = 10.1101/gad.9.7.769 }} | ||
* {{cite journal | vauthors = Forman BM, Umesono K, Chen J, Evans RM | title = Unique response pathways are established by allosteric interactions among nuclear hormone receptors | journal = Cell | volume = 81 | issue = 4 | pages = 541–50 | date = May 1995 | pmid = 7758108 | doi = 10.1016/0092-8674(95)90075-6 }} | * {{cite journal | vauthors = Forman BM, Umesono K, Chen J, Evans RM | title = Unique response pathways are established by allosteric interactions among nuclear hormone receptors | journal = Cell | volume = 81 | issue = 4 | pages = 541–50 | date = May 1995 | pmid = 7758108 | doi = 10.1016/0092-8674(95)90075-6 }} | ||
* {{cite journal | vauthors = Mages HW, Rilke O, Bravo R, Senger G, Kroczek RA | title = NOT, a human immediate-early response gene closely related to the steroid/thyroid hormone receptor NAK1/TR3 | journal = Molecular Endocrinology | volume = 8 | issue = 11 | pages = 1583–91 | date = | * {{cite journal | vauthors = Mages HW, Rilke O, Bravo R, Senger G, Kroczek RA | title = NOT, a human immediate-early response gene closely related to the steroid/thyroid hormone receptor NAK1/TR3 | journal = Molecular Endocrinology | volume = 8 | issue = 11 | pages = 1583–91 | date = November 1994 | pmid = 7877627 | doi = 10.1210/me.8.11.1583 }} | ||
* {{cite journal | vauthors = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = | * {{cite journal | vauthors = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = 1–2 | pages = 171–4 | date = January 1994 | pmid = 8125298 | doi = 10.1016/0378-1119(94)90802-8 }} | ||
* {{cite journal | vauthors = Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S | title = Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library | journal = Gene | volume = 200 | issue = | * {{cite journal | vauthors = Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S | title = Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library | journal = Gene | volume = 200 | issue = 1–2 | pages = 149–56 | date = October 1997 | pmid = 9373149 | doi = 10.1016/S0378-1119(97)00411-3 }} | ||
* {{cite journal | vauthors = Torii T, Kawarai T, Nakamura S, Kawakami H | title = Organization of the human orphan nuclear receptor Nurr1 gene | journal = Gene | volume = 230 | issue = 2 | pages = 225–32 | date = | * {{cite journal | vauthors = Torii T, Kawarai T, Nakamura S, Kawakami H | title = Organization of the human orphan nuclear receptor Nurr1 gene | journal = Gene | volume = 230 | issue = 2 | pages = 225–32 | date = April 1999 | pmid = 10216261 | doi = 10.1016/S0378-1119(99)00064-5 }} | ||
* {{cite journal | vauthors = Ichinose H, Ohye T, Suzuki T, Sumi-Ichinose C, Nomura T, Hagino Y, Nagatsu T | title = Molecular cloning of the human Nurr1 gene: characterization of the human gene and cDNAs | journal = Gene | volume = 230 | issue = 2 | pages = 233–9 | date = | * {{cite journal | vauthors = Ichinose H, Ohye T, Suzuki T, Sumi-Ichinose C, Nomura T, Hagino Y, Nagatsu T | title = Molecular cloning of the human Nurr1 gene: characterization of the human gene and cDNAs | journal = Gene | volume = 230 | issue = 2 | pages = 233–9 | date = April 1999 | pmid = 10216262 | doi = 10.1016/S0378-1119(99)00065-7 }} | ||
* {{cite journal | vauthors = Chen YH, Tsai MT, Shaw CK, Chen CH | title = Mutation analysis of the human NR4A2 gene, an essential gene for midbrain dopaminergic neurogenesis, in schizophrenic patients | journal = American Journal of Medical Genetics | volume = 105 | issue = 8 | pages = 753–7 | date = | * {{cite journal | vauthors = Chen YH, Tsai MT, Shaw CK, Chen CH | title = Mutation analysis of the human NR4A2 gene, an essential gene for midbrain dopaminergic neurogenesis, in schizophrenic patients | journal = American Journal of Medical Genetics | volume = 105 | issue = 8 | pages = 753–7 | date = December 2001 | pmid = 11803525 | doi = 10.1002/ajmg.10036 }} | ||
* {{cite journal | vauthors = Ishiguro H, Okubo Y, Ohtsuki T, Yamakawa-Kobayashi K, Arinami T | title = Mutation analysis of the retinoid X receptor beta, nuclear-related receptor 1, and peroxisome proliferator-activated receptor alpha genes in schizophrenia and alcohol dependence: possible haplotype association of nuclear-related receptor 1 gene to alcohol dependence | journal = American Journal of Medical Genetics | volume = 114 | issue = 1 | pages = 15–23 | date = | * {{cite journal | vauthors = Ishiguro H, Okubo Y, Ohtsuki T, Yamakawa-Kobayashi K, Arinami T | title = Mutation analysis of the retinoid X receptor beta, nuclear-related receptor 1, and peroxisome proliferator-activated receptor alpha genes in schizophrenia and alcohol dependence: possible haplotype association of nuclear-related receptor 1 gene to alcohol dependence | journal = American Journal of Medical Genetics | volume = 114 | issue = 1 | pages = 15–23 | date = January 2002 | pmid = 11840500 | doi = 10.1002/ajmg.1620 }} | ||
* {{cite journal | vauthors = McEvoy AN, Murphy EA, Ponnio T, Conneely OM, Bresnihan B, FitzGerald O, Murphy EP | title = Activation of nuclear orphan receptor NURR1 transcription by NF-kappa B and cyclic adenosine 5'-monophosphate response element-binding protein in rheumatoid arthritis synovial tissue | journal = Journal of Immunology | volume = 168 | issue = 6 | pages = 2979–87 | date = | * {{cite journal | vauthors = McEvoy AN, Murphy EA, Ponnio T, Conneely OM, Bresnihan B, FitzGerald O, Murphy EP | title = Activation of nuclear orphan receptor NURR1 transcription by NF-kappa B and cyclic adenosine 5'-monophosphate response element-binding protein in rheumatoid arthritis synovial tissue | journal = Journal of Immunology | volume = 168 | issue = 6 | pages = 2979–87 | date = March 2002 | pmid = 11884470 | doi = 10.4049/jimmunol.168.6.2979 }} | ||
* {{cite journal | vauthors = Xu PY, Liang R, Jankovic J, Hunter C, Zeng YX, Ashizawa T, Lai D, Le WD | title = Association of homozygous 7048G7049 variant in the intron six of Nurr1 gene with Parkinson's disease | journal = Neurology | volume = 58 | issue = 6 | pages = 881–4 | date = | * {{cite journal | vauthors = Xu PY, Liang R, Jankovic J, Hunter C, Zeng YX, Ashizawa T, Lai D, Le WD | title = Association of homozygous 7048G7049 variant in the intron six of Nurr1 gene with Parkinson's disease | journal = Neurology | volume = 58 | issue = 6 | pages = 881–4 | date = March 2002 | pmid = 11914402 | doi = 10.1212/wnl.58.6.881 }} | ||
* {{cite journal | vauthors = Bannon MJ, Pruetz B, Manning-Bog AB, Whitty CJ, Michelhaugh SK, Sacchetti P, Granneman JG, Mash DC, Schmidt CJ | title = Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 99 | issue = 9 | pages = 6382–5 | date = | * {{cite journal | vauthors = Bannon MJ, Pruetz B, Manning-Bog AB, Whitty CJ, Michelhaugh SK, Sacchetti P, Granneman JG, Mash DC, Schmidt CJ | title = Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 99 | issue = 9 | pages = 6382–5 | date = April 2002 | pmid = 11959923 | pmc = 122957 | doi = 10.1073/pnas.092654299 }} | ||
* {{cite journal | vauthors = Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK | title = Mutations in NR4A2 associated with familial Parkinson disease | journal = Nature Genetics | volume = 33 | issue = 1 | pages = 85–9 | date = | * {{cite journal | vauthors = Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK | title = Mutations in NR4A2 associated with familial Parkinson disease | journal = Nature Genetics | volume = 33 | issue = 1 | pages = 85–9 | date = January 2003 | pmid = 12496759 | doi = 10.1038/ng1066 }} | ||
* {{cite journal | vauthors = Satoh J, Kuroda Y | title = The constitutive and inducible expression of Nurr1, a key regulator of dopaminergic neuronal differentiation, in human neural and non-neural cell lines | journal = Neuropathology | volume = 22 | issue = 4 | pages = 219–32 | date = | * {{cite journal | vauthors = Satoh J, Kuroda Y | title = The constitutive and inducible expression of Nurr1, a key regulator of dopaminergic neuronal differentiation, in human neural and non-neural cell lines | journal = Neuropathology | volume = 22 | issue = 4 | pages = 219–32 | date = December 2002 | pmid = 12564761 | doi = 10.1046/j.1440-1789.2002.00460.x }} | ||
* {{cite journal | vauthors = Iwayama-Shigeno Y, Yamada K, Toyota T, Shimizu H, Hattori E, Yoshitsugu K, Fujisawa T, Yoshida Y, Kobayashi T, Toru M, Kurumaji A, Detera-Wadleigh S, Yoshikawa T | title = Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia | journal = American Journal of Medical Genetics Part B | volume = 118B | issue = 1 | pages = 20–4 | date = | * {{cite journal | vauthors = Iwayama-Shigeno Y, Yamada K, Toyota T, Shimizu H, Hattori E, Yoshitsugu K, Fujisawa T, Yoshida Y, Kobayashi T, Toru M, Kurumaji A, Detera-Wadleigh S, Yoshikawa T | title = Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia | journal = American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics | volume = 118B | issue = 1 | pages = 20–4 | date = April 2003 | pmid = 12627459 | doi = 10.1002/ajmg.b.10053 }} | ||
* {{cite journal | vauthors = Kim KS, Kim CH, Hwang DY, Seo H, Chung S, Hong SJ, Lim JK, Anderson T, Isacson O | title = Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner | journal = Journal of Neurochemistry | volume = 85 | issue = 3 | pages = 622–34 | date = May 2003 | pmid = 12694388 | doi = 10.1046/j.1471-4159.2003.01671.x }} | * {{cite journal | vauthors = Kim KS, Kim CH, Hwang DY, Seo H, Chung S, Hong SJ, Lim JK, Anderson T, Isacson O | title = Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner | journal = Journal of Neurochemistry | volume = 85 | issue = 3 | pages = 622–34 | date = May 2003 | pmid = 12694388 | doi = 10.1046/j.1471-4159.2003.01671.x }} | ||
{{refend}} | {{refend}} |
Latest revision as of 21:52, 5 September 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
The Nuclear receptor related 1 protein (NURR1) also known as NR4A2 (nuclear receptor subfamily 4, group A, member 2) is a protein that in humans is encoded by the NR4A2 gene.[1] NURR1 is a member of the nuclear receptor family of intracellular transcription factors.
NURR1 plays a key role in the maintenance of the dopaminergic system of the brain.[2] Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including Parkinson's disease, schizophrenia, and manic depression. Misregulation of this gene may be associated with rheumatoid arthritis. Four transcript variants encoding four distinct isoforms have been identified for this gene. Additional alternate splice variants may exist, but their full-length nature has not been determined.[3]
This protein is thought to be critical to development of the dopamine phenotype in the midbrain, as mice without NURR1 are lacking expression of this phenotype. This is further confirmed by studies showing that when forcing NURR1 expression in naïve precursor cells, there is complete dopamine phenotype gene expression.[4]
While NURR1 is a key protein, there are other factors required as research shows that solely expressing NURR1 fails to stimulate this phenotypic gene expression. One of these suggested factors is winged-helix transcription factor 2 (Foxa2). Studies have found these two factors to be within the same region of developing dopaminergic neurons, both of these factors were present in order to have expression for the dopamine phenotype. [4]
Nurr1 and Inflammation
Research has been conducted on Nurr1’s role in inflammation, and may provide important information in treating disorders caused by dopaminergic neuron disease. Inflammation in the CNS can result from activated microglia (macrophage analogs for the central nervous system) and other pro-inflammatory factors, such as bacterial lipopolysaccharide (LPS). LPS binds to toll-like receptors (TLR), which induces inflammatory gene expression by promoting signal-dependent transcription factors. To determine which cells are dopaminergic, experiments measured the enzyme tyrosine hydroxylase (TH), which is needed for dopamine synthesis. It has been shown that Nurr1 protects dopaminergic neurons from LPS-induced inflammation, by reducing inflammatory gene expression in microglia and astrocytes. When a short hairpin for Nurr1 was expressed in microglia and astrocytes, these cells produced inflammatory mediators, such as TNFa, NO synthase and IL-1β, supporting the conclusion that reduced Nurr1 promotes inflammation and leads to cell death of dopaminergic neurons. Nurr1 interacts with the transcription factor complex NF-κB-p65 on the inflammatory gene promoters. However, Nurr1 is dependent on other factors to be able to participate in these interactions. Nurr1 needs to be sumoylated and its co-regulating factor, glycogen synthase kinase 3, needs to be phosphorylated for these interactions to occur. Sumolyated Nurr1 recruits CoREST, a complex made of several proteins that assembles chromatin-modifying enzymes. The Nurr1/CoREST complex inhibits transcription of inflammatory genes.[5]
Structure
One investigation conducted research on the structure and found that Nurr1 does not contain a ligand-binding cavity but a patch filled with hydrophobic side chains. Non-polar amino acid residues of Nurr1’s co-regulators, SMRT and NCoR, bind to this hydrophobic patch. Analysis of tertiary structure has shown that the binding surface of the ligand-binding domain is located on the grooves of the 11th and 12th alpha helices. This study also found essential structural components of this hydrophobic patch, to be the three amino acids residues, F574, F592, L593; mutation of any these three inhibits LBD activity.[6]
Applications
Nurr1 induces tyrosine hydroxylase (TH) expression, which eventually leads to differentiation into dopaminergic neurons. Nurr1 has been demonstrated to induce differentiation in CNS precursor cells in vitro but they require additional factors to reach full maturity and dopaminergic differentiation.[7] Therefore, Nurr1 modulation may be promising for generation of dopaminergic neurons for Parkinson’s disease research, yet implantation of these induced cells as therapy treatments, has had limited results.
Knockout Studies
Studies have shown that heterozygous knockout mice for the NURR1 gene demonstrate reduced dopamine release. Initially this was compensated for by a decrease in the rate of dopamine reuptake; however, over time this reuptake could not make up for the reduced amount of dopamine being released. Coupled with the loss of dopamine receptor neurons, this can result in the onset of symptoms for Parkinson’s Disease.[8]
Interactions
Nuclear receptor related 1 protein has been shown to interact with:
- Beta-catenin,[9]
- Pituitary homeobox 3,[10]
- Retinoic acid receptor alpha,[11] and
- Retinoic acid receptor beta.[11]
References
- ↑ Okabe T, Takayanagi R, Imasaki K, Haji M, Nawata H, Watanabe T (April 1995). "cDNA cloning of a NGFI-B/nur77-related transcription factor from an apoptotic human T cell line". Journal of Immunology. 154 (8): 3871–9. PMID 7706727.
- ↑ Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P (2006). "Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1". Nucleic Acids Research. 34 (19): 5515–27. doi:10.1093/nar/gkl712. PMC 1636490. PMID 17020917.
- ↑ "Entrez Gene: NR4A2 nuclear receptor subfamily 4, group A, member 2".
- ↑ 4.0 4.1 Yi, Sang-Hoon; He, Xi-Biao; Rhee, Yong-Hee; Park, Chang-Hwan; Takizawa, Takumi; Nakashima, Kinichi; Lee, Sang-Hun (15 February 2014). "Foxa2 Acts as a Co-activator Potentiating Expression of the Nurr1-induced DA Phenotype via Epigenetic Regulation". Development.
- ↑ Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (April 2009). "A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death". Cell. 137 (1): 47–59. doi:10.1016/j.cell.2009.01.038. PMC 2754279. PMID 19345186.
- ↑ Codina A, Benoit G, Gooch JT, Neuhaus D, Perlmann T, Schwabe JW (December 2004). "Identification of a novel co-regulator interaction surface on the ligand binding domain of Nurr1 using NMR footprinting". The Journal of Biological Chemistry. 279 (51): 53338–45. doi:10.1074/jbc.M409096200. PMID 15456745.
- ↑ Kim JY, Koh HC, Lee JY, Chang MY, Kim YC, Chung HY, Son H, Lee YS, Studer L, McKay R, Lee SH (June 2003). "Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression". Journal of Neurochemistry. 85 (6): 1443–54. doi:10.1046/j.1471-4159.2003.01780.x. PMID 12787064.
- ↑ Zhang L, Le W, Xie W, Dani JA (May 2012). "Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson's disease". Neurobiology of Aging. 33 (5): 1001.e7–16. doi:10.1016/j.neurobiolaging.2011.03.022. PMC 3155628. PMID 21531044.
- ↑ Zhang L, Cen L, Qu S, Wei L, Mo M, Feng J, Sun C, Xiao Y, Luo Q, Li S, Yang X, Xu P (Apr 2016). "Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction". PLOS One. 11 (4): e0152931. doi:10.1371/journal.pone.0152931. PMC 4821554. PMID 27045591.
- ↑ Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP, Smidt MP (February 2009). "Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression". Development. 136 (4): 531–40. doi:10.1242/dev.029769. PMID 19144721.
- ↑ 11.0 11.1 Perlmann T, Jansson L (April 1995). "A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1". Genes & Development. 9 (7): 769–82. doi:10.1101/gad.9.7.769. PMID 7705655.
Further reading
- Le W, Appel SH (February 2004). "Mutant genes responsible for Parkinson's disease". Current Opinion in Pharmacology. 4 (1): 79–84. doi:10.1016/j.coph.2003.09.005. PMID 15018843.
- Wedler B, Wüstenberg PW, Naumann G (July 1975). "[Treatment of hypertonus in diabetes mellitus]". Zeitschrift Fur Die Gesamte Innere Medizin Und Ihre Grenzgebiete. 30 (13): 437–42. PMID 4929.
- Perlmann T, Jansson L (April 1995). "A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1". Genes & Development. 9 (7): 769–82. doi:10.1101/gad.9.7.769. PMID 7705655.
- Forman BM, Umesono K, Chen J, Evans RM (May 1995). "Unique response pathways are established by allosteric interactions among nuclear hormone receptors". Cell. 81 (4): 541–50. doi:10.1016/0092-8674(95)90075-6. PMID 7758108.
- Mages HW, Rilke O, Bravo R, Senger G, Kroczek RA (November 1994). "NOT, a human immediate-early response gene closely related to the steroid/thyroid hormone receptor NAK1/TR3". Molecular Endocrinology. 8 (11): 1583–91. doi:10.1210/me.8.11.1583. PMID 7877627.
- Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Torii T, Kawarai T, Nakamura S, Kawakami H (April 1999). "Organization of the human orphan nuclear receptor Nurr1 gene". Gene. 230 (2): 225–32. doi:10.1016/S0378-1119(99)00064-5. PMID 10216261.
- Ichinose H, Ohye T, Suzuki T, Sumi-Ichinose C, Nomura T, Hagino Y, Nagatsu T (April 1999). "Molecular cloning of the human Nurr1 gene: characterization of the human gene and cDNAs". Gene. 230 (2): 233–9. doi:10.1016/S0378-1119(99)00065-7. PMID 10216262.
- Chen YH, Tsai MT, Shaw CK, Chen CH (December 2001). "Mutation analysis of the human NR4A2 gene, an essential gene for midbrain dopaminergic neurogenesis, in schizophrenic patients". American Journal of Medical Genetics. 105 (8): 753–7. doi:10.1002/ajmg.10036. PMID 11803525.
- Ishiguro H, Okubo Y, Ohtsuki T, Yamakawa-Kobayashi K, Arinami T (January 2002). "Mutation analysis of the retinoid X receptor beta, nuclear-related receptor 1, and peroxisome proliferator-activated receptor alpha genes in schizophrenia and alcohol dependence: possible haplotype association of nuclear-related receptor 1 gene to alcohol dependence". American Journal of Medical Genetics. 114 (1): 15–23. doi:10.1002/ajmg.1620. PMID 11840500.
- McEvoy AN, Murphy EA, Ponnio T, Conneely OM, Bresnihan B, FitzGerald O, Murphy EP (March 2002). "Activation of nuclear orphan receptor NURR1 transcription by NF-kappa B and cyclic adenosine 5'-monophosphate response element-binding protein in rheumatoid arthritis synovial tissue". Journal of Immunology. 168 (6): 2979–87. doi:10.4049/jimmunol.168.6.2979. PMID 11884470.
- Xu PY, Liang R, Jankovic J, Hunter C, Zeng YX, Ashizawa T, Lai D, Le WD (March 2002). "Association of homozygous 7048G7049 variant in the intron six of Nurr1 gene with Parkinson's disease". Neurology. 58 (6): 881–4. doi:10.1212/wnl.58.6.881. PMID 11914402.
- Bannon MJ, Pruetz B, Manning-Bog AB, Whitty CJ, Michelhaugh SK, Sacchetti P, Granneman JG, Mash DC, Schmidt CJ (April 2002). "Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers". Proceedings of the National Academy of Sciences of the United States of America. 99 (9): 6382–5. doi:10.1073/pnas.092654299. PMC 122957. PMID 11959923.
- Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK (January 2003). "Mutations in NR4A2 associated with familial Parkinson disease". Nature Genetics. 33 (1): 85–9. doi:10.1038/ng1066. PMID 12496759.
- Satoh J, Kuroda Y (December 2002). "The constitutive and inducible expression of Nurr1, a key regulator of dopaminergic neuronal differentiation, in human neural and non-neural cell lines". Neuropathology. 22 (4): 219–32. doi:10.1046/j.1440-1789.2002.00460.x. PMID 12564761.
- Iwayama-Shigeno Y, Yamada K, Toyota T, Shimizu H, Hattori E, Yoshitsugu K, Fujisawa T, Yoshida Y, Kobayashi T, Toru M, Kurumaji A, Detera-Wadleigh S, Yoshikawa T (April 2003). "Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia". American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics. 118B (1): 20–4. doi:10.1002/ajmg.b.10053. PMID 12627459.
- Kim KS, Kim CH, Hwang DY, Seo H, Chung S, Hong SJ, Lim JK, Anderson T, Isacson O (May 2003). "Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner". Journal of Neurochemistry. 85 (3): 622–34. doi:10.1046/j.1471-4159.2003.01671.x. PMID 12694388.
External links
- Nurr1+nuclear+receptor at the US National Library of Medicine Medical Subject Headings (MeSH)