ISL1 is a marker for cardiac progenitors of the secondary heart field (SHF) which includes the right ventricle and the outflow tract. It also has a biological function as shown in Isl1 knockout mice which have a severely deformed heart.[4] More recently it has been defined as a marker for a cardiac progenitor cell lineage that is capable of differentiating into all 3 major cell types of the heart: cardiomyocytes, smooth muscle and endothelial cell lineages.[5][6][7]
The validity of ISL1 as a marker for cardiac progenitor cells has been questioned since some groups have found no evidence that ISL1 cells serve as cardiac progenitors.[8] Furthermore, ISL1 is not restricted to second heart field progenitors in the developing heart, but also labels cardiac neural crest.[9] This paper supports work from the Vilquin group in 2011, which concluded that ISL1 can represent cells from both neural crest and cardiomyocyte lineages.[10] While it has been demonstrated by multiple groups that ISL1-positive cells can indeed differentiate into all 3 major cell types of the heart, their significance in cardiovascular development is still unclear and their clinical relevance has been seriously questioned.
References
↑Tanizawa Y, Riggs AC, Dagogo-Jack S, Vaxillaire M, Froguel P, Liu L, Donis-Keller H, Permutt MA (July 1994). "Isolation of the human LIM/homeodomain gene islet-1 and identification of a simple sequence repeat polymorphism [corrected]". Diabetes. 43 (7): 935–41. doi:10.2337/diabetes.43.7.935. PMID7912209.
↑Gay F, Anglade I, Gong Z, Salbert G (October 2000). "The LIM/homeodomain protein islet-1 modulates estrogen receptor functions". Mol. Endocrinol. 14 (10): 1627–48. doi:10.1210/me.14.10.1627. PMID11043578.
↑Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (December 2003). "Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart". Dev. Cell. 5 (6): 877–89. doi:10.1016/S1534-5807(03)00363-0. PMID14667410.
↑Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR (December 2006). "Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification". Cell. 127 (6): 1151–65. doi:10.1016/j.cell.2006.10.029. PMID17123592.
↑Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, Platoshyn O, Yuan JX, Evans S, Chien KR (February 2005). "Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages". Nature. 433 (7026): 647–53. doi:10.1038/nature03215. PMID15703750.
Dong J, Asa SL, Drucker DJ (1992). "Islet cell and extrapancreatic expression of the LIM domain homeobox gene isl-1". Mol. Endocrinol. 5 (11): 1633–41. doi:10.1210/mend-5-11-1633. PMID1685766.
Riggs AC, Tanizawa Y, Aoki M, Wasson J, Ferrer J, Rabin DU, Vaxillaire M, Froguel P, Permutt MA (1995). "Characterization of the LIM/homeodomain gene islet-1 and single nucleotide screening in NIDDM". Diabetes. 44 (6): 689–94. doi:10.2337/diabetes.44.6.689. PMID7789634.
Wang M, Drucker DJ (1994). "The LIM domain homeobox gene isl-1: conservation of human, hamster, and rat complementary deoxyribonucleic acid sequences and expression in cell types of nonneuroendocrine lineage". Endocrinology. 134 (3): 1416–22. doi:10.1210/en.134.3.1416. PMID7907017.
Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM (1996). "Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation". Cell. 84 (2): 309–20. doi:10.1016/S0092-8674(00)80985-X. PMID8565076.
Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID8889548.
Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H (1997). "Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells". Nature. 385 (6613): 257–60. doi:10.1038/385257a0. PMID9000074.
Jurata LW, Pfaff SL, Gill GN (1998). "The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors". J. Biol. Chem. 273 (6): 3152–7. doi:10.1074/jbc.273.6.3152. PMID9452425.
Bach I, Rodriguez-Esteban C, Carrière C, Bhushan A, Krones A, Rose DW, Glass CK, Andersen B, Izpisúa Belmonte JC, Rosenfeld MG (1999). "RLIM inhibits functional activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase complex". Nat. Genet. 22 (4): 394–9. doi:10.1038/11970. PMID10431247.
Gay F, Anglade I, Gong Z, Salbert G (2001). "The LIM/homeodomain protein islet-1 modulates estrogen receptor functions". Mol. Endocrinol. 14 (10): 1627–48. doi:10.1210/me.14.10.1627. PMID11043578.
Ostendorff HP, Peirano RI, Peters MA, Schlüter A, Bossenz M, Scheffner M, Bach I (2002). "Ubiquitination-dependent cofactor exchange on LIM homeodomain transcription factors". Nature. 416 (6876): 99–103. doi:10.1038/416099a. PMID11882901.
Holm P, Rydlander B, Luthman H, Kockum I, European Consortium for IDDM Genome Studies (2004). "Interaction and association analysis of a type 1 diabetes susceptibility locus on chromosome 5q11-q13 and the 7q32 chromosomal region in Scandinavian families". Diabetes. 53 (6): 1584–91. doi:10.2337/diabetes.53.6.1584. PMID15161765.
Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, Heidt AB, Mori AD, Arruda EP, Gertsenstein M, Georges R, Davidson L, Mo R, Hui CC, Henkelman RM, Nemer M, Black BL, Nagy A, Bruneau BG (2005). "Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development". Development. 132 (10): 2463–74. doi:10.1242/dev.01827. PMID15843409.
Peng SY, Wang WP, Meng J, Li T, Zhang H, Li YM, Chen P, Ma KT, Zhou CY (2006). "ISL1 physically interacts with BETA2 to promote insulin gene transcriptional synergy in non-beta cells". Biochim. Biophys. Acta. 1731 (3): 154–9. doi:10.1016/j.bbaexp.2005.08.013. PMID16321656.