Revision as of 05:10, 25 November 2017 by en>JCW-CleanerBot(→Function: task, replaced: Philos. Trans. R. Soc. Lond., B, Biol. Sci. → Philos. Trans. R. Soc. Lond. B Biol. Sci. using AWB)
Serum response factor is a member of the MADS (MCM1, Agamous, Deficiens, and SRF) box superfamily of transcription factors.[2] This protein binds to the serum response element (SRE) in the promoter region of target genes. This protein regulates the activity of many immediate early genes, for example c-fos, and thereby participates in cell cycle regulation, apoptosis, cell growth, and cell differentiation. This gene is the downstream target of many pathways; for example, the mitogen-activated protein kinase pathway (MAPK) that acts through the ternary complex factors (TCFs).[3][4]
SRF is important during the development of the embryo, as it has been linked to the formation of mesoderm.[5][6] In the fully developed mammal, SRF is crucial for the growth of skeletal muscle.[7] Interaction of SRF with other proteins, such as steroid hormone receptors, may contribute to regulation of muscle growth by steroids.[8] Interaction of SRF with other proteins such as myocardin or Elk-1 may enhance or suppress expression of genes important for growth of vascular smooth muscle.
Clinical significance
Lack of skin SRF is associated with psoriasis and other skin diseases.[9]
Interactions
Serum response factor has been shown to interact with:
↑Norman C, Runswick M, Pollock R, Treisman R (December 1988). "Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element". Cell. 55 (6): 989–1003. doi:10.1016/0092-8674(88)90244-9. PMID3203386.
↑Hanlon M, Sealy L (May 1999). "Ras regulates the association of serum response factor and CCAAT/enhancer-binding protein beta". J. Biol. Chem. 274 (20): 14224–8. doi:10.1074/jbc.274.20.14224. PMID10318842.
↑Joliot V, Demma M, Prywes R (February 1995). "Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor". Nature. 373 (6515): 632–5. doi:10.1038/373632a0. PMID7854423.
↑Zhu H, Joliot V, Prywes R (February 1994). "Role of transcription factor TFIIF in serum response factor-activated transcription". J. Biol. Chem. 269 (5): 3489–97. PMID8106390.
↑Lee SK, Kim JH, Lee YC, Cheong J, Lee JW (April 2000). "Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor". J. Biol. Chem. 275 (17): 12470–4. doi:10.1074/jbc.275.17.12470. PMID10777532.
↑Kim HJ, Kim JH, Lee JW (October 1998). "Steroid receptor coactivator-1 interacts with serum response factor and coactivates serum response element-mediated transactivations". J. Biol. Chem. 273 (44): 28564–7. doi:10.1074/jbc.273.44.28564. PMID9786846.
↑Gupta M, Kogut P, Davis FJ, Belaguli NS, Schwartz RJ, Gupta MP (March 2001). "Physical interaction between the MADS box of serum response factor and the TEA/ATTS DNA-binding domain of transcription enhancer factor-1". J. Biol. Chem. 276 (13): 10413–22. doi:10.1074/jbc.M008625200. PMID11136726.