This gene is a member of the nuclear factor of activated T cells (NFAT) family. The product of this gene is a DNA-binding protein with a REL-homology region (RHR) and an NFAT-homology region (NHR). This protein is present in the cytosol and only translocates to the nucleus upon T cell receptor (TCR) stimulation, where it becomes a member of the nuclear factors of activated T cells transcription complex. This complex plays a central role in inducing gene transcription during the immune response. Alternate transcriptional splice variants, encoding different isoforms, have been characterized.[2]
Clinical significance
NFAT transcription factors are implicated in breast cancer, more specifically in the process of cell motility at the basis of metastasis formation. Indeed, NFAT1 (NFATC2) is pro-invasive and pro-migratory in breast carcinoma.[3][4]
To increase cell motility NFAT1 up-regulates the gene of the Lipocalin 2 expression and modulate the TWEAKR/TWEAK axis.[5]
Translocation forming an in frame fusions product between EWSR1 gene and the NFATc2 gene has been described in bone tumor with a Ewing sarcoma-like clinical appearance. The translocation breakpoint led to the loss of the controlling elements of the NFATc2 protein and the fusion of the N terminal region of the EWSR1 gene conferred constant activation of the protein.[6]
↑Northrop JP, Ho SN, Chen L, Thomas DJ, Timmerman LA, Nolan GP, Admon A, Crabtree GR (Jun 1994). "NF-AT components define a family of transcription factors targeted in T-cell activation". Nature. 369 (6480): 497–502. doi:10.1038/369497a0. PMID8202141.
↑Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A (Jul 2002). "The role of NFAT transcription factors in integrin-mediated carcinoma invasion". Nature Cell Biology. 4 (7): 540–4. doi:10.1038/ncb816. PMID12080349.
↑Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A (Nov 2005). "Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT". Molecular Cell. 20 (4): 539–50. doi:10.1016/j.molcel.2005.10.033. PMID16307918.
↑Gaudineau B, Fougère M, Guaddachi F, Lemoine F, de la Grange P, Jauliac S (Oct 2012). "Lipocalin 2, the TNF-like receptor TWEAKR and its ligand TWEAK act downstream of NFAT1 to regulate breast cancer cell invasion". Journal of Cell Science. 125 (Pt 19): 4475–86. doi:10.1242/jcs.099879. PMID22767506.
↑Szuhai K, Ijszenga M, de Jong D, Karseladze A, Tanke HJ, Hogendoorn PC (Apr 2009). "The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology". Clinical Cancer Research. 15 (7): 2259–68. doi:10.1158/1078-0432.CCR-08-2184. PMID19318479.
↑San-Antonio B, Iñiguez MA, Fresno M (Jul 2002). "Protein kinase Czeta phosphorylates nuclear factor of activated T cells and regulates its transactivating activity". The Journal of Biological Chemistry. 277 (30): 27073–80. doi:10.1074/jbc.M106983200. PMID12021260.
Further reading
Rao A, Luo C, Hogan PG (1997). "Transcription factors of the NFAT family: regulation and function". Annual Review of Immunology. 15: 707–747. doi:10.1146/annurev.immunol.15.1.707. PMID9143705.
Crabtree GR (Mar 1999). "Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT". Cell. 96 (5): 611–614. doi:10.1016/S0092-8674(00)80571-1. PMID10089876.
Auffray C, Behar G, Bois F, Bouchier C, Da Silva C, Devignes MD, Duprat S, Houlgatte R, Jumeau MN, Lamy B (Feb 1995). "[IMAGE: molecular integration of the analysis of the human genome and its expression]". Comptes Rendus De L'Académie Des Sciences. Série III, Sciences De La Vie. 318 (2): 263–72. PMID7757816.
Li X, Ho SN, Luna J, Giacalone J, Thomas DJ, Timmerman LA, Crabtree GR, Francke U (1995). "Cloning and chromosomal localization of the human and murine genes for the T-cell transcription factors NFATc and NFATp". Cytogenetics and Cell Genetics. 68 (3–4): 185–191. doi:10.1159/000133910. PMID7842733.
Ho S, Timmerman L, Northrop J, Crabtree GR (1995). "Cloning and characterization of NF-ATc and NF-ATp: the cytoplasmic components of NF-AT". Advances in Experimental Medicine and Biology. 365: 167–73. doi:10.1007/978-1-4899-0987-9_17. PMID7887301.
Jabado N, Le Deist F, Fisher A, Hivroz C (Nov 1994). "Interaction of HIV gp120 and anti-CD4 antibodies with the CD4 molecule on human CD4+ T cells inhibits the binding activity of NF-AT, NF-kappa B and AP-1, three nuclear factors regulating interleukin-2 gene enhancer activity". European Journal of Immunology. 24 (11): 2646–2652. doi:10.1002/eji.1830241112. PMID7957556.
Vacca A, Farina M, Maroder M, Alesse E, Screpanti I, Frati L, Gulino A (Nov 1994). "Human immunodeficiency virus type-1 tat enhances interleukin-2 promoter activity through synergism with phorbol ester and calcium-mediated activation of the NF-AT cis-regulatory motif". Biochemical and Biophysical Research Communications. 205 (1): 467–474. doi:10.1006/bbrc.1994.2689. PMID7999066.
Jain J, McCaffrey PG, Miner Z, Kerppola TK, Lambert JN, Verdine GL, Curran T, Rao A (Sep 1993). "The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun". Nature. 365 (6444): 352–355. doi:10.1038/365352a0. PMID8397339.
Di Somma MM, Majolini MB, Burastero SE, Telford JL, Baldari CT (Sep 1996). "Cyclosporin A sensitivity of the HIV-1 long terminal repeat identifies distinct p56lck-dependent pathways activated by CD4 triggering". European Journal of Immunology. 26 (9): 2181–2188. doi:10.1002/eji.1830260933. PMID8814265.
Copeland KF, McKay PJ, Rosenthal KL (Jan 1996). "Suppression of the human immunodeficiency virus long terminal repeat by CD8+ T cells is dependent on the NFAT-1 element". AIDS Research and Human Retroviruses. 12 (2): 143–148. doi:10.1089/aid.1996.12.143. PMID8834464.
Bonaldo MF, Lennon G, Soares MB (Sep 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID8889548.
Hodge MR, Chun HJ, Rengarajan J, Alt A, Lieberson R, Glimcher LH (Dec 1996). "NF-AT-Driven interleukin-4 transcription potentiated by NIP45". Science. 274 (5294): 1903–1905. doi:10.1126/science.274.5294.1903. PMID8943202.
Amasaki Y, Masuda ES, Imamura R, Arai K, Arai N (Mar 1998). "Distinct NFAT family proteins are involved in the nuclear NFAT-DNA binding complexes from human thymocyte subsets". Journal of Immunology. 160 (5): 2324–33. PMID9498773.
Chen L, Glover JN, Hogan PG, Rao A, Harrison SC (Mar 1998). "Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA". Nature. 392 (6671): 42–48. doi:10.1038/32100. PMID9510247.