HSF2, as well as the related gene HSF1, encodes a protein that binds specifically to the heat-shock element and has homology to HSFs of other species. Heat shock transcription factors activate heat-shock response genes under conditions of heat or other stresses. Although the names HSF1 and HSF2 were chosen for historical reasons, these peptides should be referred to as heat-shock transcription factors.[2]
↑Yoshima T, Yura T, Yanagi H (Nov 1997). "The trimerization domain of human heat shock factor 2 is able to interact with nucleoporin p62". Biochem. Biophys. Res. Commun. 240 (1): 228–33. doi:10.1006/bbrc.1997.7662. PMID9367915.
↑He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (Sep 2003). "Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress". J. Biol. Chem. 278 (37): 35465–75. doi:10.1074/jbc.M304663200. PMID12813038.
Further reading
Walsh D, Li Z, Wu Y, Nagata K (1997). "Heat shock and the role of the HSPs during neural plate induction in early mammalian CNS and brain development". Cell. Mol. Life Sci. 53 (2): 198–211. doi:10.1007/PL00000592. PMID9118008.
Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI (1991). "Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability". Genes Dev. 5 (10): 1902–11. doi:10.1101/gad.5.10.1902. PMID1717345.
Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Sheldon LA, Kingston RE (1993). "Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2". Genes Dev. 7 (8): 1549–58. doi:10.1101/gad.7.8.1549. PMID8339932.
Yoshima T, Yura T, Yanagi H (1997). "The trimerization domain of human heat shock factor 2 is able to interact with nucleoporin p62". Biochem. Biophys. Res. Commun. 240 (1): 228–33. doi:10.1006/bbrc.1997.7662. PMID9367915.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID9373149.
Yoshima T, Yura T, Yanagi H (1998). "Novel testis-specific protein that interacts with heat shock factor 2". Gene. 214 (1–2): 139–46. doi:10.1016/S0378-1119(98)00208-X. PMID9651507.
Hong Y, Sarge KD (1999). "Regulation of protein phosphatase 2A activity by heat shock transcription factor 2". J. Biol. Chem. 274 (19): 12967–70. doi:10.1074/jbc.274.19.12967. PMID10224043.
Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD (2001). "Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor". J. Biol. Chem. 276 (21): 18513–8. doi:10.1074/jbc.M008066200. PMID11278381.
He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (2003). "Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress". J. Biol. Chem. 278 (37): 35465–75. doi:10.1074/jbc.M304663200. PMID12813038.
Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2004). "Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70". J. Cell Sci. 116 (Pt 17): 3557–70. doi:10.1242/jcs.00671. PMID12865437.
Roccisana JL, Kawanabe N, Kajiya H, Koide M, Roodman GD, Reddy SV (2004). "Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells". J. Biol. Chem. 279 (11): 10500–7. doi:10.1074/jbc.M303727200. PMID14699143.
Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong Y, Park-Sarge OK, Sarge KD (2005). "Mechanism of hsp70i gene bookmarking". Science. 307 (5708): 421–3. doi:10.1126/science.1106478. PMID15662014.