Calcitriol receptor: Difference between revisions
imported>Mimihitam No edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
{{Infobox gene}} | {{Infobox gene}} | ||
The '''calcitriol receptor''', more commonly known as the '''vitamin D receptor''' ('''VDR''') and also known as '''NR1I1''' (nuclear receptor subfamily 1, group I, member 1), is a member of the [[nuclear receptor]] family of [[transcription factor]]s.<ref name="pmid17132852">{{cite journal | | The '''calcitriol receptor''', more commonly known as the '''vitamin D receptor''' ('''VDR''') and also known as '''NR1I1''' (nuclear receptor subfamily 1, group I, member 1), is a member of the [[nuclear receptor]] family of [[transcription factor]]s.<ref name="pmid17132852">{{cite journal | author = Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA | title = International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor | journal = Pharmacol. Rev. | volume = 58 | issue = 4 | pages = 742–59 | date = December 2006 | pmid = 17132852 | doi = 10.1124/pr.58.4.6 }}</ref> [[Calcitriol]], the active form of [[vitamin D]], binds to the VDR, which then forms a [[heterodimer]] with the [[retinoid-X receptor]]. The VDR heterodimer then enters the nucleus and binds to [[Vitamin D response element gene transcriptions|Vitamin D responsive elements]] (VDRE) in genomic [[DNA]] resulting in [[Gene expression|expression]] or [[transrepression]] of specific [[gene products]]. The VDR not only regulates transcriptional responses but also involved in [[microRNA]]-directed post transcriptional mechanisms.<ref name="pmid23362149">{{cite journal | author = Lisse TS, Chun RF, Rieger S, Adams JS, Hewison M | title = Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts | journal = J Bone Miner Res | volume = 28 | issue = 6 | pages = 1478-14788 | date = June 2013 | pmid = 23362149 | doi = 10.1002/jbmr.1882 | pmc = 3663893 }}</ref> In humans, the vitamin D receptor is encoded by the ''VDR'' [[gene]].<ref name="pmid1662663">{{cite journal | author = Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF | title = The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7 | journal = Genomics | volume = 11 | issue = 1 | pages = 168–73 | date = September 1991 | pmid = 1662663 | doi = 10.1016/0888-7543(91)90114-T | url = http://linkinghub.elsevier.com/retrieve/pii/0888-7543(91)90114-T }}</ref> | ||
[[Glucocorticoid]]s are known to decrease expression of VDR, which is expressed in most tissues of the body and regulate [[intestinal]] transport of [[calcium]], [[iron]] and other minerals.<ref name="pmid21182397">{{cite journal | | [[Glucocorticoid]]s are known to decrease expression of VDR, which is expressed in most tissues of the body and regulate [[intestinal]] transport of [[calcium]], [[iron]] and other minerals.<ref name="pmid21182397">{{cite journal | author = Fleet JC, Schoch RD | title = Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors | journal = Crit Rev Clin Lab Sci | volume = 47 | issue = 4 | pages = 181–195 | date = August 2010 | pmid = 21182397 | doi = 10.3109/10408363.2010.536429 | url = http://informahealthcare.com/doi/abs/10.3109/10408363.2010.536429 | pmc=3235806}}</ref> | ||
== Function == | == Function == | ||
This gene encodes the nuclear hormone receptor for [[vitamin D3|vitamin D<sub>3</sub>]]. This receptor also functions as a receptor for the secondary [[bile acid]] [[lithocholic acid]]. The receptor belongs to the family of trans-acting transcriptional regulatory factors and shows similarity of sequence to the steroid and thyroid hormone receptors.<ref name="pmid17132848">{{cite journal | | This gene encodes the nuclear hormone receptor for [[vitamin D3|vitamin D<sub>3</sub>]]. This receptor also functions as a receptor for the secondary [[bile acid]] [[lithocholic acid]]. The receptor belongs to the family of trans-acting transcriptional regulatory factors and shows similarity of sequence to the steroid and thyroid hormone receptors.<ref name="pmid17132848">{{cite journal | author = Germain P, Staels B, Dacquet C, Spedding M, Laudet V | title = Overview of nomenclature of nuclear receptors | journal = Pharmacol. Rev. | volume = 58 | issue = 4 | pages = 685–704 | date = December 2006 | pmid = 17132848 | doi = 10.1124/pr.58.4.2 }}</ref> | ||
Downstream targets of this nuclear hormone receptor are involved principally in mineral metabolism though the receptor regulates a variety of other metabolic pathways, such as those involved in the immune response and cancer.<ref name="pmid16848743">{{cite journal | | Downstream targets of this nuclear hormone receptor are involved principally in mineral metabolism though the receptor regulates a variety of other metabolic pathways, such as those involved in the immune response and cancer.<ref name="pmid16848743">{{cite journal | author = Adorini L, Daniel KC, Penna G | title = Vitamin D receptor agonists, cancer and the immune system: an intricate relationship | journal = Curr Top Med Chem | volume = 6 | issue = 12 | pages = 1297–301 | year = 2006 | pmid = 16848743 | doi = 10.2174/156802606777864890 }}</ref> | ||
Mutations in this gene are associated with type II vitamin D-resistant [[rickets]]. A single nucleotide polymorphism in the initiation codon results in an alternate translation start site three codons downstream. Alternative splicing results in multiple transcript variants encoding the same protein.<ref name="entrez">{{cite web | title = Entrez Gene: VDR vitamin D (1,25- dihydroxyvitamin D3) receptor| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7421| accessdate = }}</ref> | Mutations in this gene are associated with type II vitamin D-resistant [[rickets]]. A single nucleotide polymorphism in the initiation codon results in an alternate translation start site three codons downstream. Alternative splicing results in multiple transcript variants encoding the same protein.<ref name="entrez">{{cite web | title = Entrez Gene: VDR vitamin D (1,25- dihydroxyvitamin D3) receptor| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7421| accessdate = }}</ref> | ||
The vitamin D receptor plays an important role in regulating the hair cycle. Loss of VDR is associated with hair loss in experimental animals.<ref name="pmid20138991">{{cite journal | | The vitamin D receptor plays an important role in regulating the hair cycle. Loss of VDR is associated with hair loss in experimental animals.<ref name="pmid20138991">{{cite journal | author = Luderer HF, Demay MB | title = The vitamin D receptor, the skin and stem cells | journal = J. Steroid Biochem. Mol. Biol. | volume = 121 | issue = 1–2 | pages = 314–6 | date = July 2010 | pmid = 20138991 | doi = 10.1016/j.jsbmb.2010.01.015 }}</ref> | ||
Experimental studies have shown that the unliganded VDR interacts with regulatory regions in cWnt ([[wnt signaling pathway]]) and [[sonic hedgehog]] target genes and is required for the induction of these pathways during the postnatal hair cycle.<ref name="pmid25180455">{{cite journal | | Experimental studies have shown that the unliganded VDR interacts with regulatory regions in cWnt ([[wnt signaling pathway]]) and [[sonic hedgehog]] target genes and is required for the induction of these pathways during the postnatal hair cycle.<ref name="pmid25180455">{{cite journal | author = Lisse TS, Saini V, Zhao H, Luderer HF, Gori F, Demay MB | title = The Vitamin D Receptor Is Required for Activation of cWnt and Hedgehog Signaling in Keratinocytes | journal = Mol. Endocrinol. | volume = 28 | issue = 10 | pages = 1698–1706 | date = September 2014 | pmid = 25180455 | doi = 10.1210/me.2014-1043 | pmc=4179637}}</ref> | ||
These studies have revealed novel actions of the unliganded VDR in regulating the post-morphogenic hair cycle. | These studies have revealed novel actions of the unliganded VDR in regulating the post-morphogenic hair cycle. | ||
Line 20: | Line 20: | ||
Calcitriol receptor has been shown to [[Protein-protein interaction|interact]] with | Calcitriol receptor has been shown to [[Protein-protein interaction|interact]] with | ||
{{div col|colwidth=20em}} | {{div col|colwidth=20em}} | ||
* [[BAG1]],<ref name="pmid10967105">{{cite journal | | * [[BAG1]],<ref name="pmid10967105">{{cite journal | author = Guzey M, Takayama S, Reed JC | title = BAG1L enhances trans-activation function of the vitamin D receptor | journal = J. Biol. Chem. | volume = 275 | issue = 52 | pages = 40749–56 | date = December 2000 | pmid = 10967105 | doi = 10.1074/jbc.M004977200 }}</ref> | ||
* [[BAZ1B]],<ref name=pmid12837248/> | * [[BAZ1B]],<ref name=pmid12837248/> | ||
* [[Caveolin 3|CAV3]],<ref name="pmid20015453">{{cite journal | | * [[Caveolin 3|CAV3]],<ref name="pmid20015453">{{cite journal | author = Zhao G, Simpson RU | title = Membrane Localization, Caveolin-3 Association and Rapid Actions of Vitamin D Receptor in Cardiac Myocytes | journal = Steroids | volume = 75 | issue = 8–9 | pages = 555–9 | year = 2010 | pmid = 20015453 | pmc = 2885558 | doi = 10.1016/j.steroids.2009.12.001 }}</ref> | ||
* [[MED1]],<ref name=pmid12837248/><ref name="pmid10198638">{{cite journal | | * [[MED1]],<ref name=pmid12837248/><ref name="pmid10198638">{{cite journal | author = Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG | title = Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators | journal = Mol. Cell | volume = 3 | issue = 3 | pages = 361–70 | date = March 1999 | pmid = 10198638 | doi = 10.1016/S1097-2765(00)80463-3 }}</ref> | ||
* [[MED12]],<ref name=pmid12837248/><ref name=pmid10198638/> | * [[MED12]],<ref name=pmid12837248/><ref name=pmid10198638/> | ||
* [[MED24]],<ref name=pmid12837248/><ref name=pmid10198638/> | * [[MED24]],<ref name=pmid12837248/><ref name=pmid10198638/> | ||
* [[Nuclear receptor co-repressor 1|NCOR1]],<ref name="pmid9878542">{{cite journal | | * [[Nuclear receptor co-repressor 1|NCOR1]],<ref name="pmid9878542">{{cite journal | author = Tagami T, Lutz WH, Kumar R, Jameson JL | title = The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators | journal = Biochem. Biophys. Res. Commun. | volume = 253 | issue = 2 | pages = 358–63 | date = December 1998 | pmid = 9878542 | doi = 10.1006/bbrc.1998.9799 }}</ref> | ||
* [[Nuclear receptor co-repressor 2|NCOR2]],<ref name=pmid9878542/><ref name=pmid12460926/> | * [[Nuclear receptor co-repressor 2|NCOR2]],<ref name=pmid9878542/><ref name=pmid12460926/> | ||
* [[Nuclear receptor coactivator 2|NCOA2]],<ref name="pmid12837248">{{cite journal | | * [[Nuclear receptor coactivator 2|NCOA2]],<ref name="pmid12837248">{{cite journal | author = Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S | title = The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome | journal = Cell | volume = 113 | issue = 7 | pages = 905–17 | date = June 2003 | pmid = 12837248 | doi = 10.1016/S0092-8674(03)00436-7 }}</ref><ref name="pmid10748178">{{cite journal | author = Herdick M, Steinmeyer A, Carlberg C | title = Antagonistic action of a 25-carboxylic ester analogue of 1alpha, 25-dihydroxyvitamin D3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators | journal = J. Biol. Chem. | volume = 275 | issue = 22 | pages = 16506–12 | date = June 2000 | pmid = 10748178 | doi = 10.1074/jbc.M910000199 }}</ref><ref name=pmid11514567/><ref name="pmid12612084">{{cite journal | author = He B, Wilson EM | title = Electrostatic Modulation in Steroid Receptor Recruitment of LXXLL and FXXLF Motifs | journal = Mol. Cell. Biol. | volume = 23 | issue = 6 | pages = 2135–50 | date = March 2003 | pmid = 12612084 | pmc = 149467 | doi = 10.1128/MCB.23.6.2135-2150.2003 }}</ref> | ||
* [[Retinoid X receptor alpha|RXRA]],<ref name=pmid11514567/><ref name=pmid9632709/> | * [[Retinoid X receptor alpha|RXRA]],<ref name=pmid11514567/><ref name=pmid9632709/> | ||
* [[RUNX1]],<ref name=pmid12460926/> | * [[RUNX1]],<ref name=pmid12460926/> | ||
* [[RUNX1T1]],<ref name=pmid12460926/> | * [[RUNX1T1]],<ref name=pmid12460926/> | ||
* [[SNW1]],<ref name="pmid11514567">{{cite journal | | * [[SNW1]],<ref name="pmid11514567">{{cite journal | author = Zhang C, Baudino TA, Dowd DR, Tokumaru H, Wang W, MacDonald PN | title = Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription | journal = J. Biol. Chem. | volume = 276 | issue = 44 | pages = 40614–20 | date = November 2001 | pmid = 11514567 | doi = 10.1074/jbc.M106263200 }}</ref><ref name="pmid9632709">{{cite journal | author = Baudino TA, Kraichely DM, Jefcoat SC, Winchester SK, Partridge NC, MacDonald PN | title = Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin D-mediated transcription | journal = J. Biol. Chem. | volume = 273 | issue = 26 | pages = 16434–41 | date = June 1998 | pmid = 9632709 | doi = 10.1074/jbc.273.26.16434 }}</ref> | ||
* [[STAT1]],<ref name="pmid11909970">{{cite journal | | * [[STAT1]],<ref name="pmid11909970">{{cite journal | author = Vidal M, Ramana CV, Dusso AS | title = Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription | journal = Mol. Cell. Biol. | volume = 22 | issue = 8 | pages = 2777–87 | date = April 2002 | pmid = 11909970 | pmc = 133712 | doi = 10.1128/MCB.22.8.2777-2787.2002 }}</ref> and | ||
* [[Zinc finger and BTB domain-containing protein 16|ZBTB16]].<ref name="pmid12460926">{{cite journal | | * [[Zinc finger and BTB domain-containing protein 16|ZBTB16]].<ref name="pmid12460926">{{cite journal | author = Puccetti E, Obradovic D, Beissert T, Bianchini A, Washburn B, Chiaradonna F, Boehrer S, Hoelzer D, Ottmann OG, Pelicci PG, Nervi C, Ruthardt M | title = AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor | journal = Cancer Res. | volume = 62 | issue = 23 | pages = 7050–8 | date = December 2002 | pmid = 12460926 | doi = }}</ref><ref name="pmid11719366">{{cite journal | author = Ward JO, McConnell MJ, Carlile GW, Pandolfi PP, Licht JD, Freedman LP | title = The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor | journal = Blood | volume = 98 | issue = 12 | pages = 3290–300 | date = December 2001 | pmid = 11719366 | doi = 10.1182/blood.V98.12.3290 }}</ref> | ||
{{Div col end}} | {{Div col end}} | ||
Line 45: | Line 45: | ||
== Further reading == | == Further reading == | ||
{{refbegin |35em}} | {{refbegin |35em}} | ||
* {{cite journal | | * {{cite journal | author = Hosoi T | title = [Polymorphisms of vitamin D receptor gene] | journal = Nippon Rinsho | volume = 60 Suppl 3 | issue = | pages = 106–10 | year = 2002 | pmid = 11979895 | doi = }} | ||
* {{cite journal | | * {{cite journal | author = Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP | title = Genetics and biology of vitamin D receptor polymorphisms | journal = Gene | volume = 338 | issue = 2 | pages = 143–56 | year = 2004 | pmid = 15315818 | doi = 10.1016/j.gene.2004.05.014 }} | ||
* {{cite journal | | * {{cite journal | author = Norman AW | title = Minireview: vitamin D receptor: new assignments for an already busy receptor | journal = Endocrinology | volume = 147 | issue = 12 | pages = 5542–8 | year = 2007 | pmid = 16946007 | doi = 10.1210/en.2006-0946 }} | ||
* {{cite journal | | * {{cite journal | author = Bollag WB | title = Differentiation of human keratinocytes requires the vitamin d receptor and its coactivators | journal = J. Invest. Dermatol. | volume = 127 | issue = 4 | pages = 748–50 | year = 2007 | pmid = 17363957 | doi = 10.1038/sj.jid.5700692 }} | ||
* {{cite journal | | * {{cite journal | author = Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG | title = RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors | journal = EMBO J. | volume = 11 | issue = 4 | pages = 1409–18 | year = 1992 | pmid = 1314167 | pmc = 556590 | doi = }} | ||
* {{cite journal | | * {{cite journal | author = Goto H, Chen KS, Prahl JM, DeLuca HF | title = A single receptor identical with that from intestine/T47D cells mediates the action of 1,25-dihydroxyvitamin D-3 in HL-60 cells | journal = Biochim. Biophys. Acta | volume = 1132 | issue = 1 | pages = 103–8 | year = 1992 | pmid = 1324736 | doi = 10.1016/0167-4781(92)90063-6 }} | ||
* {{cite journal | | * {{cite journal | author = Saijo T, Ito M, Takeda E, Huq AH, Naito E, Yokota I, Sone T, Pike JW, Kuroda Y | title = A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection | journal = Am. J. Hum. Genet. | volume = 49 | issue = 3 | pages = 668–73 | year = 1991 | pmid = 1652893 | pmc = 1683124 | doi = }} | ||
* {{cite journal | | * {{cite journal | author = Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF | title = The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7 | journal = Genomics | volume = 11 | issue = 1 | pages = 168–73 | year = 1992 | pmid = 1662663 | doi = 10.1016/0888-7543(91)90114-T }} | ||
* {{cite journal | | * {{cite journal | author = Yu XP, Mocharla H, Hustmyer FG, Manolagas SC | title = Vitamin D receptor expression in human lymphocytes. Signal requirements and characterization by western blots and DNA sequencing | journal = J. Biol. Chem. | volume = 266 | issue = 12 | pages = 7588–95 | year = 1991 | pmid = 1850412 | doi = }} | ||
* {{cite journal | | * {{cite journal | author = Malloy PJ, Hochberg Z, Tiosano D, Pike JW, Hughes MR, Feldman D | title = The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families | journal = J. Clin. Invest. | volume = 86 | issue = 6 | pages = 2071–9 | year = 1991 | pmid = 2174914 | pmc = 329846 | doi = 10.1172/JCI114944 }} | ||
* {{cite journal | | * {{cite journal | author = Sone T, Marx SJ, Liberman UA, Pike JW | title = A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3 | journal = Mol. Endocrinol. | volume = 4 | issue = 4 | pages = 623–31 | year = 1991 | pmid = 2177843 | doi = 10.1210/mend-4-4-623 }} | ||
* {{cite journal | | * {{cite journal | author = Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O'Malley BW | title = Cloning and expression of full-length cDNA encoding human vitamin D receptor | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 85 | issue = 10 | pages = 3294–8 | year = 1988 | pmid = 2835767 | pmc = 280195 | doi = 10.1073/pnas.85.10.3294 }} | ||
* {{cite journal | | * {{cite journal | author = Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O'Malley BW | title = Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets | journal = Science | volume = 242 | issue = 4886 | pages = 1702–5 | year = 1989 | pmid = 2849209 | doi = 10.1126/science.2849209 }} | ||
* {{cite journal | | * {{cite journal | author = Rut AR, Hewison M, Kristjansson K, Luisi B, Hughes MR, O'Riordan JL | title = Two mutations causing vitamin D resistant rickets: modelling on the basis of steroid hormone receptor DNA-binding domain crystal structures | journal = Clin. Endocrinol. | volume = 41 | issue = 5 | pages = 581–90 | year = 1995 | pmid = 7828346 | doi = 10.1111/j.1365-2265.1994.tb01822.x }} | ||
* {{cite journal | | * {{cite journal | author = Malloy PJ, Weisman Y, Feldman D | title = Hereditary 1 alpha,25-dihydroxyvitamin D-resistant rickets resulting from a mutation in the vitamin D receptor deoxyribonucleic acid-binding domain | journal = J. Clin. Endocrinol. Metab. | volume = 78 | issue = 2 | pages = 313–6 | year = 1994 | pmid = 8106618 | doi = 10.1210/jc.78.2.313 }} | ||
* {{cite journal | | * {{cite journal | author = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = 1–2 | pages = 171–4 | year = 1994 | pmid = 8125298 | doi = 10.1016/0378-1119(94)90802-8 }} | ||
* {{cite journal | | * {{cite journal | author = Yagi H, Ozono K, Miyake H, Nagashima K, Kuroume T, Pike JW | title = A new point mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor in a kindred with hereditary 1,25-dihydroxyvitamin D-resistant rickets | journal = J. Clin. Endocrinol. Metab. | volume = 76 | issue = 2 | pages = 509–12 | year = 1993 | pmid = 8381803 | doi = 10.1210/jc.76.2.509 }} | ||
* {{cite journal | | * {{cite journal | author = Kristjansson K, Rut AR, Hewison M, O'Riordan JL, Hughes MR | title = Two mutations in the hormone binding domain of the vitamin D receptor cause tissue resistance to 1,25 dihydroxyvitamin D3 | journal = J. Clin. Invest. | volume = 92 | issue = 1 | pages = 12–6 | year = 1993 | pmid = 8392085 | pmc = 293517 | doi = 10.1172/JCI116539 }} | ||
* {{cite journal | | * {{cite journal | author = Jurutka PW, Hsieh JC, Nakajima S, Haussler CA, Whitfield GK, Haussler MR | title = Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 93 | issue = 8 | pages = 3519–24 | year = 1996 | pmid = 8622969 | pmc = 39642 | doi = 10.1073/pnas.93.8.3519 }} | ||
* {{cite journal | | * {{cite journal | author = Lin NU, Malloy PJ, Sakati N, al-Ashwal A, Feldman D | title = A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets | journal = J. Clin. Endocrinol. Metab. | volume = 81 | issue = 7 | pages = 2564–9 | year = 1996 | pmid = 8675579 | doi = 10.1210/jc.81.7.2564 }} | ||
{{refend}} | {{refend}} | ||
Latest revision as of 18:27, 30 March 2023
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
The calcitriol receptor, more commonly known as the vitamin D receptor (VDR) and also known as NR1I1 (nuclear receptor subfamily 1, group I, member 1), is a member of the nuclear receptor family of transcription factors.[1] Calcitriol, the active form of vitamin D, binds to the VDR, which then forms a heterodimer with the retinoid-X receptor. The VDR heterodimer then enters the nucleus and binds to Vitamin D responsive elements (VDRE) in genomic DNA resulting in expression or transrepression of specific gene products. The VDR not only regulates transcriptional responses but also involved in microRNA-directed post transcriptional mechanisms.[2] In humans, the vitamin D receptor is encoded by the VDR gene.[3]
Glucocorticoids are known to decrease expression of VDR, which is expressed in most tissues of the body and regulate intestinal transport of calcium, iron and other minerals.[4]
Function
This gene encodes the nuclear hormone receptor for vitamin D3. This receptor also functions as a receptor for the secondary bile acid lithocholic acid. The receptor belongs to the family of trans-acting transcriptional regulatory factors and shows similarity of sequence to the steroid and thyroid hormone receptors.[5]
Downstream targets of this nuclear hormone receptor are involved principally in mineral metabolism though the receptor regulates a variety of other metabolic pathways, such as those involved in the immune response and cancer.[6]
Mutations in this gene are associated with type II vitamin D-resistant rickets. A single nucleotide polymorphism in the initiation codon results in an alternate translation start site three codons downstream. Alternative splicing results in multiple transcript variants encoding the same protein.[7]
The vitamin D receptor plays an important role in regulating the hair cycle. Loss of VDR is associated with hair loss in experimental animals.[8] Experimental studies have shown that the unliganded VDR interacts with regulatory regions in cWnt (wnt signaling pathway) and sonic hedgehog target genes and is required for the induction of these pathways during the postnatal hair cycle.[9] These studies have revealed novel actions of the unliganded VDR in regulating the post-morphogenic hair cycle.
Interactions
Calcitriol receptor has been shown to interact with
Interactive pathway map
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
- ↑ The interactive pathway map can be edited at WikiPathways: "VitaminDSynthesis_WP1531".
References
- ↑ Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA (December 2006). "International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor". Pharmacol. Rev. 58 (4): 742–59. doi:10.1124/pr.58.4.6. PMID 17132852.
- ↑ Lisse TS, Chun RF, Rieger S, Adams JS, Hewison M (June 2013). "Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts". J Bone Miner Res. 28 (6): 1478–14788. doi:10.1002/jbmr.1882. PMC 3663893. PMID 23362149.
- ↑ Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF (September 1991). "The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7". Genomics. 11 (1): 168–73. doi:10.1016/0888-7543(91)90114-T. PMID 1662663.
- ↑ Fleet JC, Schoch RD (August 2010). "Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors". Crit Rev Clin Lab Sci. 47 (4): 181–195. doi:10.3109/10408363.2010.536429. PMC 3235806. PMID 21182397.
- ↑ Germain P, Staels B, Dacquet C, Spedding M, Laudet V (December 2006). "Overview of nomenclature of nuclear receptors". Pharmacol. Rev. 58 (4): 685–704. doi:10.1124/pr.58.4.2. PMID 17132848.
- ↑ Adorini L, Daniel KC, Penna G (2006). "Vitamin D receptor agonists, cancer and the immune system: an intricate relationship". Curr Top Med Chem. 6 (12): 1297–301. doi:10.2174/156802606777864890. PMID 16848743.
- ↑ "Entrez Gene: VDR vitamin D (1,25- dihydroxyvitamin D3) receptor".
- ↑ Luderer HF, Demay MB (July 2010). "The vitamin D receptor, the skin and stem cells". J. Steroid Biochem. Mol. Biol. 121 (1–2): 314–6. doi:10.1016/j.jsbmb.2010.01.015. PMID 20138991.
- ↑ Lisse TS, Saini V, Zhao H, Luderer HF, Gori F, Demay MB (September 2014). "The Vitamin D Receptor Is Required for Activation of cWnt and Hedgehog Signaling in Keratinocytes". Mol. Endocrinol. 28 (10): 1698–1706. doi:10.1210/me.2014-1043. PMC 4179637. PMID 25180455.
- ↑ Guzey M, Takayama S, Reed JC (December 2000). "BAG1L enhances trans-activation function of the vitamin D receptor". J. Biol. Chem. 275 (52): 40749–56. doi:10.1074/jbc.M004977200. PMID 10967105.
- ↑ 11.0 11.1 11.2 11.3 11.4 Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (June 2003). "The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome". Cell. 113 (7): 905–17. doi:10.1016/S0092-8674(03)00436-7. PMID 12837248.
- ↑ Zhao G, Simpson RU (2010). "Membrane Localization, Caveolin-3 Association and Rapid Actions of Vitamin D Receptor in Cardiac Myocytes". Steroids. 75 (8–9): 555–9. doi:10.1016/j.steroids.2009.12.001. PMC 2885558. PMID 20015453.
- ↑ 13.0 13.1 13.2 Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG (March 1999). "Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators". Mol. Cell. 3 (3): 361–70. doi:10.1016/S1097-2765(00)80463-3. PMID 10198638.
- ↑ 14.0 14.1 Tagami T, Lutz WH, Kumar R, Jameson JL (December 1998). "The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators". Biochem. Biophys. Res. Commun. 253 (2): 358–63. doi:10.1006/bbrc.1998.9799. PMID 9878542.
- ↑ 15.0 15.1 15.2 15.3 Puccetti E, Obradovic D, Beissert T, Bianchini A, Washburn B, Chiaradonna F, Boehrer S, Hoelzer D, Ottmann OG, Pelicci PG, Nervi C, Ruthardt M (December 2002). "AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor". Cancer Res. 62 (23): 7050–8. PMID 12460926.
- ↑ Herdick M, Steinmeyer A, Carlberg C (June 2000). "Antagonistic action of a 25-carboxylic ester analogue of 1alpha, 25-dihydroxyvitamin D3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators". J. Biol. Chem. 275 (22): 16506–12. doi:10.1074/jbc.M910000199. PMID 10748178.
- ↑ 17.0 17.1 17.2 Zhang C, Baudino TA, Dowd DR, Tokumaru H, Wang W, MacDonald PN (November 2001). "Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription". J. Biol. Chem. 276 (44): 40614–20. doi:10.1074/jbc.M106263200. PMID 11514567.
- ↑ He B, Wilson EM (March 2003). "Electrostatic Modulation in Steroid Receptor Recruitment of LXXLL and FXXLF Motifs". Mol. Cell. Biol. 23 (6): 2135–50. doi:10.1128/MCB.23.6.2135-2150.2003. PMC 149467. PMID 12612084.
- ↑ 19.0 19.1 Baudino TA, Kraichely DM, Jefcoat SC, Winchester SK, Partridge NC, MacDonald PN (June 1998). "Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin D-mediated transcription". J. Biol. Chem. 273 (26): 16434–41. doi:10.1074/jbc.273.26.16434. PMID 9632709.
- ↑ Vidal M, Ramana CV, Dusso AS (April 2002). "Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription". Mol. Cell. Biol. 22 (8): 2777–87. doi:10.1128/MCB.22.8.2777-2787.2002. PMC 133712. PMID 11909970.
- ↑ Ward JO, McConnell MJ, Carlile GW, Pandolfi PP, Licht JD, Freedman LP (December 2001). "The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor". Blood. 98 (12): 3290–300. doi:10.1182/blood.V98.12.3290. PMID 11719366.
Further reading
- Hosoi T (2002). "[Polymorphisms of vitamin D receptor gene]". Nippon Rinsho. 60 Suppl 3: 106–10. PMID 11979895.
- Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP (2004). "Genetics and biology of vitamin D receptor polymorphisms". Gene. 338 (2): 143–56. doi:10.1016/j.gene.2004.05.014. PMID 15315818.
- Norman AW (2007). "Minireview: vitamin D receptor: new assignments for an already busy receptor". Endocrinology. 147 (12): 5542–8. doi:10.1210/en.2006-0946. PMID 16946007.
- Bollag WB (2007). "Differentiation of human keratinocytes requires the vitamin d receptor and its coactivators". J. Invest. Dermatol. 127 (4): 748–50. doi:10.1038/sj.jid.5700692. PMID 17363957.
- Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG (1992). "RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors". EMBO J. 11 (4): 1409–18. PMC 556590. PMID 1314167.
- Goto H, Chen KS, Prahl JM, DeLuca HF (1992). "A single receptor identical with that from intestine/T47D cells mediates the action of 1,25-dihydroxyvitamin D-3 in HL-60 cells". Biochim. Biophys. Acta. 1132 (1): 103–8. doi:10.1016/0167-4781(92)90063-6. PMID 1324736.
- Saijo T, Ito M, Takeda E, Huq AH, Naito E, Yokota I, Sone T, Pike JW, Kuroda Y (1991). "A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection". Am. J. Hum. Genet. 49 (3): 668–73. PMC 1683124. PMID 1652893.
- Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF (1992). "The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7". Genomics. 11 (1): 168–73. doi:10.1016/0888-7543(91)90114-T. PMID 1662663.
- Yu XP, Mocharla H, Hustmyer FG, Manolagas SC (1991). "Vitamin D receptor expression in human lymphocytes. Signal requirements and characterization by western blots and DNA sequencing". J. Biol. Chem. 266 (12): 7588–95. PMID 1850412.
- Malloy PJ, Hochberg Z, Tiosano D, Pike JW, Hughes MR, Feldman D (1991). "The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families". J. Clin. Invest. 86 (6): 2071–9. doi:10.1172/JCI114944. PMC 329846. PMID 2174914.
- Sone T, Marx SJ, Liberman UA, Pike JW (1991). "A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3". Mol. Endocrinol. 4 (4): 623–31. doi:10.1210/mend-4-4-623. PMID 2177843.
- Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O'Malley BW (1988). "Cloning and expression of full-length cDNA encoding human vitamin D receptor". Proc. Natl. Acad. Sci. U.S.A. 85 (10): 3294–8. doi:10.1073/pnas.85.10.3294. PMC 280195. PMID 2835767.
- Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O'Malley BW (1989). "Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets". Science. 242 (4886): 1702–5. doi:10.1126/science.2849209. PMID 2849209.
- Rut AR, Hewison M, Kristjansson K, Luisi B, Hughes MR, O'Riordan JL (1995). "Two mutations causing vitamin D resistant rickets: modelling on the basis of steroid hormone receptor DNA-binding domain crystal structures". Clin. Endocrinol. 41 (5): 581–90. doi:10.1111/j.1365-2265.1994.tb01822.x. PMID 7828346.
- Malloy PJ, Weisman Y, Feldman D (1994). "Hereditary 1 alpha,25-dihydroxyvitamin D-resistant rickets resulting from a mutation in the vitamin D receptor deoxyribonucleic acid-binding domain". J. Clin. Endocrinol. Metab. 78 (2): 313–6. doi:10.1210/jc.78.2.313. PMID 8106618.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Yagi H, Ozono K, Miyake H, Nagashima K, Kuroume T, Pike JW (1993). "A new point mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor in a kindred with hereditary 1,25-dihydroxyvitamin D-resistant rickets". J. Clin. Endocrinol. Metab. 76 (2): 509–12. doi:10.1210/jc.76.2.509. PMID 8381803.
- Kristjansson K, Rut AR, Hewison M, O'Riordan JL, Hughes MR (1993). "Two mutations in the hormone binding domain of the vitamin D receptor cause tissue resistance to 1,25 dihydroxyvitamin D3". J. Clin. Invest. 92 (1): 12–6. doi:10.1172/JCI116539. PMC 293517. PMID 8392085.
- Jurutka PW, Hsieh JC, Nakajima S, Haussler CA, Whitfield GK, Haussler MR (1996). "Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation". Proc. Natl. Acad. Sci. U.S.A. 93 (8): 3519–24. doi:10.1073/pnas.93.8.3519. PMC 39642. PMID 8622969.
- Lin NU, Malloy PJ, Sakati N, al-Ashwal A, Feldman D (1996). "A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets". J. Clin. Endocrinol. Metab. 81 (7): 2564–9. doi:10.1210/jc.81.7.2564. PMID 8675579.
External links
- Calcitriol+Receptors at the US National Library of Medicine Medical Subject Headings (MeSH)
- Nuclear Receptor Resource
- Vitamin D Receptor: Molecule of the Month
- IUPHAR: Vitamin D receptor
This article incorporates text from the United States National Library of Medicine, which is in the public domain.