Estrogen receptor alpha: Difference between revisions

Jump to navigation Jump to search
Reverted good faith edits by Pkbwcgs (talk): Script introduced many formatting errors. (TW)
imported>Rjwilmsi
m Journal cites:, added 1 PMC
 
Line 39: Line 39:


== Tissue distribution and function ==
== Tissue distribution and function ==
ERα plays a role in the physiological development and function of a variety of [[organ systems]] to varying degrees, including the [[Reproductive system|reproductive]], [[Central nervous system|central nervous]], [[Skeleton|skeletal]], and [[Circulatory system|cardiovascular systems]].<ref name="Bondesson_2015">{{cite journal | vauthors = Bondesson M, Hao R, Lin CY, Williams C, Gustafsson JÅ | title = Estrogen receptor signaling during vertebrate development | journal = Biochimica et Biophysica Acta | volume = 1849 | issue = 2 | pages = 142–51 | date = February 2015 | pmid = 24954179 | pmc = 4269570 | doi = 10.1016/j.bbagrm.2014.06.005 }}</ref> Accordingly, ERα is widely expressed throughout the body, including the [[uterus]] and [[ovary]], [[Male reproductive system|male reproductive organs]], [[mammary gland]], [[Bone|bone,]] [[heart]], [[hypothalamus]], [[pituitary gland]], [[liver]], [[lung]], [[kidney]], [[spleen]], and [[Adipose tissue|adipose]] tissue.<ref name="Bondesson_2015" /><ref name="Curtis_Hewitt_2000">{{cite journal | vauthors = Curtis Hewitt S, Couse JF, Korach KS | title = Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action | journal = Breast Cancer Research | volume = 2 | issue = 5 | pages = 345–52 | date = 2000 | pmid = 11250727 | doi = 10.1186/bcr79 }}</ref><ref name="Paterni_2014">{{cite journal | vauthors = Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F | title = Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential | journal = Steroids | volume = 90 | pages = 13–29 | date = November 2014 | pmid = 24971815 | pmc = 4192010 | doi = 10.1016/j.steroids.2014.06.012 }}</ref> The development and function of these tissues is disrupted in [[Model organism|animal models]] lacking active ERα genes, such as the ERα [[knockout mouse]] (ERKO), providing a preliminary understanding of ERα function at specific [[Biological target|target]] organs.<ref name="Bondesson_2015" /><ref name="Lee_2012">{{cite journal | vauthors = Lee HR, Kim TH, Choi KC | title = Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse | journal = Laboratory Animal Research | volume = 28 | issue = 2 | pages = 71–6 | date = June 2012 | pmid = 22787479 | pmc = 3389841 | doi = 10.5625/lar.2012.28.2.71 }}</ref>
ERα plays a role in the physiological development and function of a variety of [[organ systems]] to varying degrees, including the [[Reproductive system|reproductive]], [[Central nervous system|central nervous]], [[Skeleton|skeletal]], and [[Circulatory system|cardiovascular systems]].<ref name="Bondesson_2015">{{cite journal | vauthors = Bondesson M, Hao R, Lin CY, Williams C, Gustafsson JÅ | title = Estrogen receptor signaling during vertebrate development | journal = Biochimica et Biophysica Acta | volume = 1849 | issue = 2 | pages = 142–51 | date = February 2015 | pmid = 24954179 | pmc = 4269570 | doi = 10.1016/j.bbagrm.2014.06.005 }}</ref> Accordingly, ERα is widely expressed throughout the body, including the [[uterus]] and [[ovary]], [[Male reproductive system|male reproductive organs]], [[mammary gland]], [[Bone|bone,]] [[heart]], [[hypothalamus]], [[pituitary gland]], [[liver]], [[lung]], [[kidney]], [[spleen]], and [[Adipose tissue|adipose]] tissue.<ref name="Bondesson_2015" /><ref name="Curtis_Hewitt_2000">{{cite journal | vauthors = Curtis Hewitt S, Couse JF, Korach KS | title = Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action | journal = Breast Cancer Research | volume = 2 | issue = 5 | pages = 345–52 | date = 2000 | pmid = 11250727 | doi = 10.1186/bcr79 | pmc=138656}}</ref><ref name="Paterni_2014">{{cite journal | vauthors = Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F | title = Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential | journal = Steroids | volume = 90 | pages = 13–29 | date = November 2014 | pmid = 24971815 | pmc = 4192010 | doi = 10.1016/j.steroids.2014.06.012 }}</ref> The development and function of these tissues is disrupted in [[Model organism|animal models]] lacking active ERα genes, such as the ERα [[knockout mouse]] (ERKO), providing a preliminary understanding of ERα function at specific [[Biological target|target]] organs.<ref name="Bondesson_2015" /><ref name="Lee_2012">{{cite journal | vauthors = Lee HR, Kim TH, Choi KC | title = Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse | journal = Laboratory Animal Research | volume = 28 | issue = 2 | pages = 71–6 | date = June 2012 | pmid = 22787479 | pmc = 3389841 | doi = 10.5625/lar.2012.28.2.71 }}</ref>


=== Uterus and ovary ===
=== Uterus and ovary ===
Line 50: Line 50:


=== Mammary gland ===
=== Mammary gland ===
[[Estrogen]] stimulation of ERα is known to stimulate [[Cell growth|cell proliferation]] in breast tissue.<ref name="Paterni_2014" /> ERα may be responsible for [[Puberty|pubertal]] development of the adult [[phenotype]], through meditation of [[mammary gland]] response to [[Endocrine system|ovarian hormones]].<ref name="Lee_2012" /> This role is consistent with the abnormalities of female ERKO mice: the [[Lactiferous duct|epithelial ducts]] of female ERKO mice fail to grow beyond their [[Preadolescence|pre-pubertal]] length, and [[Lactation|lactational]] structures do not develop.<ref name="Curtis_Hewitt_2000" /> As a result, the functions of the [[mammary gland]] -- including both [[lactation]] <nowiki/>and release of [[prolactin]] -- are greatly impaired in ERKO mice.<ref name="Lee_2012" />
[[Estrogen]] stimulation of ERα is known to stimulate [[Cell growth|cell proliferation]] in breast tissue.<ref name="Paterni_2014" /> ERα may be responsible for [[Puberty|pubertal]] development of the adult [[phenotype]], through mediation of [[mammary gland]] response to [[Endocrine system|ovarian hormones]].<ref name="Lee_2012" /> This role is consistent with the abnormalities of female ERKO mice: the [[Lactiferous duct|epithelial ducts]] of female ERKO mice fail to grow beyond their [[Preadolescence|pre-pubertal]] length, and [[Lactation|lactational]] structures do not develop.<ref name="Curtis_Hewitt_2000" /> As a result, the functions of the [[mammary gland]] -- including both [[lactation]] <nowiki/>and release of [[prolactin]] -- are greatly impaired in ERKO mice.<ref name="Lee_2012" />


=== Bone ===
=== Bone ===

Latest revision as of 11:23, 5 March 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Estrogen receptor alpha (ERα), also known as NR3A1 (nuclear receptor subfamily 3, group A, member 1), is one of two main types of estrogen receptor, a nuclear receptor that is activated by the sex hormone estrogen. In humans, ERα is encoded by the gene ESR1 (EStrogen Receptor 1).[1][2][3]

Structure

The estrogen receptor (ER) is a ligand-activated transcription factor composed of several domains important for hormone binding, DNA binding, and activation of transcription.[4] Alternative splicing results in several ESR1 mRNA transcripts, which differ primarily in their 5-prime untranslated regions. The translated receptors show less variability.[5][6]

Ligands

Agonists

Non-selective

Selective

Agonists of ERα selective over ERβ include:

Mixed

Antagonists

Non-selective

Selective

Antagonists of ERα selective over ERβ include:

Tissue distribution and function

ERα plays a role in the physiological development and function of a variety of organ systems to varying degrees, including the reproductive, central nervous, skeletal, and cardiovascular systems.[7] Accordingly, ERα is widely expressed throughout the body, including the uterus and ovary, male reproductive organs, mammary gland, bone, heart, hypothalamus, pituitary gland, liver, lung, kidney, spleen, and adipose tissue.[7][8][9] The development and function of these tissues is disrupted in animal models lacking active ERα genes, such as the ERα knockout mouse (ERKO), providing a preliminary understanding of ERα function at specific target organs.[7][10]

Uterus and ovary

ERα is essential in the maturation of the female reproductive phenotype. In the absence of ERα, the ERKO mouse develops an adult uterus, indicating that ERα may not mediate the initial growth of the uterus.[7][8] However, ERα plays a role in the completion of this development, and the subsequent function of the tissue.[10] Activation of ERα is known to trigger cell proliferation in the uterus.[9] The uterus of female ERKO mice is hypoplastic, suggesting that ERα mediates mitosis and differentiation in the uterus in response to estrogen stimulation.[8]

Similarly, prepubertal female ERKO mice develop ovaries that are nearly indistinguishable from those of their wildtype counterparts. However, as the ERKO mice mature they progressively present an abnormal ovarian phenotype in both physiology and function.[8][10] Specifically, female ERKO mice develop enlarged ovaries containing hemorrhagic follicular cysts, which also lack the corpus luteum, and therefore do not ovulate.[7][8][10] This adult ovarian phenotype suggests that in the absence of ERα, estrogen is no longer able to perform negative feedback on the hypothalamus, resulting in chronically elevated LH levels and constant ovarian stimulation.[8] These results identify a pivotal role for ERα in the hypothalamus, in addition to its role in the estrogen-driven maturation through theca and interstitial cells of the ovary.[8]

Male reproductive organs

ERα is similarly essential in the maturation and maintenance of the male reproductive phenotype, as male ERKO mice are infertile and present undersized testes.[7][10] The integrity of testicular structures of ERKO mice, such as the seminiferous tubules of the testes and the seminiferous epithelium, declines over time.[7][8] Furthermore, the reproductive performance of male ERKO mice is hindered abnormalities in sexual physiology and behavior, such as impaired spermatogenesis and loss of intromission and ejaculatory responses.[7][8]

Mammary gland

Estrogen stimulation of ERα is known to stimulate cell proliferation in breast tissue.[9] ERα may be responsible for pubertal development of the adult phenotype, through mediation of mammary gland response to ovarian hormones.[10] This role is consistent with the abnormalities of female ERKO mice: the epithelial ducts of female ERKO mice fail to grow beyond their pre-pubertal length, and lactational structures do not develop.[8] As a result, the functions of the mammary gland -- including both lactation and release of prolactin -- are greatly impaired in ERKO mice.[10]

Bone

Though its expression in bone is moderate, ERα is known to be responsible for maintenance of bone integrity.[9][10] It is hypothesized that estrogen stimulation of ERα may trigger the release of growth factors, such as epidermal growth factor or insulin-like growth factor-1, which in turn regulate bone development and maintenance.[10][8] Accordingly, male and female ERKO mice exhibit decreased bone length and size.[10][8]

Brain

Estrogen signaling through ERα appears to be responsible for various aspects of central nervous development, such as synaptogenesis and synaptic remodeling.[10] In the brain, ERα is found in hypothalamus, and preoptic area, and arcuate nucleus, all three of which have been linked to reproductive behavior, and the masculinization of the mouse brain appears to take place through ERα function.[7][10] Furthermore, studies in models of psychopathology and neurodegenerative disease states suggest that estrogen receptors mediate the neuroprotective role of estrogen in the brain.[7][9] Finally, ERα appears to mediate positive feedback effects of estrogen on the brain's secretion of GnRH and LH, by way increasing expression of kisspeptin in neurons of the arcuate nucleus and anteroventral periventricular nucleus.[11][12] Although classical studies have suggested that negative feedback effects of estrogen also operate through ERα, female mice lacking ERα in kisspeptin-expressing neurons continue to demonstrate a degree of negative feedback response.[13]

Clinical significance

Estrogen insensitivity syndrome is a very rare condition characterized by a defective ERα that is insensitive to estrogens.[14][15][16][17] The clinical presentation of a female was observed to include absence of breast development and other female secondary sexual characteristics at puberty, hypoplastic uterus, primary amenorrhea, enlarged multicystic ovaries and associated lower abdominal pain, mild hyperandrogenism (manifested as cystic acne), and delayed bone maturation as well as an increased rate of bone turnover.[17] The clinical presentation in a male was reported to include lack of epiphyseal closure, tall stature, osteoporosis, and poor sperm viability.[16] Both individuals were completely insensitive to exogenous estrogen treatment, even with high doses.[16][17]

Genetic polymorphisms in the gene encoding the ERα have been associated with breast cancer in women and gynecomastia in men.[18][19]

Coactivators

Coactivators of ER-α include:

Interactions

Estrogen receptor alpha has been shown to interact with:

References

  1. "Entrez Gene: ESR1 estrogen receptor 1".
  2. Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M (December 1985). "Cloning of the human estrogen receptor cDNA". Proc. Natl. Acad. Sci. U.S.A. 82 (23): 7889–93. doi:10.1073/pnas.82.23.7889. PMC 390875. PMID 3865204.
  3. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (March 1986). "Sequence and expression of human estrogen receptor complementary DNA". Science. 231 (4742): 1150–4. doi:10.1126/science.3753802. PMID 3753802.
  4. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA (December 2006). "International Union of Pharmacology. LXIV. Estrogen receptors". Pharmacol. Rev. 58 (4): 773–81. doi:10.1124/pr.58.4.8. PMID 17132854.
  5. "Entrez Gene: DBI diazepam binding inhibitor (GABA receptor modulator, acyl-Coenzyme A binding protein)".
  6. Kos M, Reid G, Denger S, Gannon F (December 2001). "Minireview: genomic organization of the human ERalpha gene promoter region". Mol. Endocrinol. 15 (12): 2057–63. doi:10.1210/me.15.12.2057. PMID 11731608.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 Bondesson M, Hao R, Lin CY, Williams C, Gustafsson JÅ (February 2015). "Estrogen receptor signaling during vertebrate development". Biochimica et Biophysica Acta. 1849 (2): 142–51. doi:10.1016/j.bbagrm.2014.06.005. PMC 4269570. PMID 24954179.
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 Curtis Hewitt S, Couse JF, Korach KS (2000). "Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action". Breast Cancer Research. 2 (5): 345–52. doi:10.1186/bcr79. PMC 138656. PMID 11250727.
  9. 9.0 9.1 9.2 9.3 9.4 Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F (November 2014). "Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential". Steroids. 90: 13–29. doi:10.1016/j.steroids.2014.06.012. PMC 4192010. PMID 24971815.
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Lee HR, Kim TH, Choi KC (June 2012). "Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse". Laboratory Animal Research. 28 (2): 71–6. doi:10.5625/lar.2012.28.2.71. PMC 3389841. PMID 22787479.
  11. Clarkson J (April 2013). "Effects of estradiol on kisspeptin neurons during puberty". Frontiers in Neuroendocrinology. 34 (2): 120–31. doi:10.1016/j.yfrne.2013.02.002. PMID 23500175.
  12. Moenter SM, Chu Z, Christian CA (March 2009). "Neurobiological mechanisms underlying oestradiol negative and positive feedback regulation of gonadotrophin-releasing hormone neurones". Journal of Neuroendocrinology. 21 (4): 327–33. doi:10.1111/j.1365-2826.2009.01826.x. PMC 2738426. PMID 19207821.
  13. Plant TM (August 2015). "60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-pituitary-gonadal axis". The Journal of Endocrinology. 226 (2): T41–54. doi:10.1530/JOE-15-0113. PMC 4498991. PMID 25901041.
  14. Jameson JL, De Groot LJ (February 2015). Endocrinology: Adult and Pediatric. Elsevier Health Sciences. pp. 238–. ISBN 978-0-323-32195-2.
  15. Korach KS, Couse JF, Curtis SW, Washburn TF, Lindzey J, Kimbro KS, Eddy EM, Migliaccio S, Snedeker SM, Lubahn DB, Schomberg DW, Smith EP (1996). "Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes". Recent Progress in Hormone Research. 51: 159–86, discussion 186–8. PMID 8701078.
  16. 16.0 16.1 16.2 Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (Oct 1994). "Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man". The New England Journal of Medicine. 331 (16): 1056–61. doi:10.1056/NEJM199410203311604. PMID 8090165.
  17. 17.0 17.1 17.2 Quaynor SD, Stradtman EW, Kim HG, Shen Y, Chorich LP, Schreihofer DA, Layman LC (Jul 2013). "Delayed puberty and estrogen resistance in a woman with estrogen receptor α variant". The New England Journal of Medicine. 369 (2): 164–71. doi:10.1056/NEJMoa1303611. PMC 3823379. PMID 23841731.
  18. Jahandoost S, Farhanghian P, Abbasi S (2017). "The Effects of Sex Protein Receptors and Sex Steroid Hormone Gene Polymorphisms on Breast Cancer Risk". J Natl Med Assoc. 109 (2): 126–138. doi:10.1016/j.jnma.2017.02.003. PMID 28599754.
  19. Eren E, Edgunlu T, Korkmaz HA, Cakir ED, Demir K, Cetin ES, Celik SK (2014). "Genetic variants of estrogen beta and leptin receptors may cause gynecomastia in adolescent". Gene. 541 (2): 101–6. doi:10.1016/j.gene.2014.03.013. PMID 24625355.
  20. Shang Y, Brown M (2002). "Molecular determinants for the tissue specificity of SERMs". Science. 295 (5564): 2465–8. doi:10.1126/science.1068537. PMID 11923541.
  21. Smith CL, O'Malley BW (2004). "Coregulator function: a key to understanding tissue specificity of selective receptor modulators". Endocr Rev. 25 (1): 45–71. doi:10.1210/er.2003-0023. PMID 14769827.
  22. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997). "AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer". Science. 277 (5328): 965–8. doi:10.1126/science.277.5328.965. PMID 9252329.
  23. Gururaj AE, Peng S, Vadlamudi RK, Kumar R (August 2007). "Estrogen induces expression of BCAS3, a novel estrogen receptor-alpha coactivator, through proline-, glutamic acid-, and leucine-rich protein-1 (PELP1)". Mol. Endocrinol. 21 (8): 1847–60. doi:10.1210/me.2006-0514. PMID 17505058.
  24. Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, Kumar R (2001). "Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha". J. Biol. Chem. 276 (41): 38272–9. doi:10.1074/jbc.M103783200. PMID 11481323.
  25. Rubino D, Driggers P, Arbit D, Kemp L, Miller B, Coso O, Pagliai K, Gray K, Gutkind S, Segars J (May 1998). "Characterization of Brx, a novel Dbl family member that modulates estrogen receptor action". Oncogene. 16 (19): 2513–26. doi:10.1038/sj.onc.1201783. PMID 9627117.
  26. Wormke M, Stoner M, Saville B, Walker K, Abdelrahim M, Burghardt R, Safe S (Mar 2003). "The Aryl Hydrocarbon Receptor Mediates Degradation of Estrogen Receptor α through Activation of Proteasomes". Mol. Cell. Biol. 23 (6): 1843–55. doi:10.1128/MCB.23.6.1843-1855.2003. PMC 149455. PMID 12612060.
  27. Klinge CM, Kaur K, Swanson HI (Jan 2000). "The aryl hydrocarbon receptor interacts with estrogen receptor alpha and orphan receptors COUP-TFI and ERRalpha1". Arch. Biochem. Biophys. 373 (1): 163–74. doi:10.1006/abbi.1999.1552. PMID 10620335.
  28. Zheng L, Annab LA, Afshari CA, Lee WH, Boyer TG (Aug 2001). "BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor". Proc. Natl. Acad. Sci. U.S.A. 98 (17): 9587–92. doi:10.1073/pnas.171174298. PMC 55496. PMID 11493692.
  29. Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM (Jan 2001). "Role of direct interaction in BRCA1 inhibition of estrogen receptor activity". Oncogene. 20 (1): 77–87. doi:10.1038/sj.onc.1204073. PMID 11244506.
  30. Kawai H, Li H, Chun P, Avraham S, Avraham HK (Oct 2002). "Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells". Oncogene. 21 (50): 7730–9. doi:10.1038/sj.onc.1205971. PMID 12400015.
  31. 31.0 31.1 31.2 Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM (Jan 2002). "p300 Modulates the BRCA1 inhibition of estrogen receptor activity". Cancer Res. 62 (1): 141–51. PMID 11782371.
  32. Schlegel A, Wang C, Pestell RG, Lisanti MP (Oct 2001). "Ligand-independent activation of oestrogen receptor alpha by caveolin-1". Biochem. J. 359 (Pt 1): 203–10. doi:10.1042/0264-6021:3590203. PMC 1222136. PMID 11563984.
  33. 33.00 33.01 33.02 33.03 33.04 33.05 33.06 33.07 33.08 33.09 Kang YK, Guermah M, Yuan CX, Roeder RG (Mar 2002). "The TRAP/Mediator coactivator complex interacts directly with estrogen receptors α and β through the TRAP220 subunit and directly enhances estrogen receptor function in vitro". Proc. Natl. Acad. Sci. U.S.A. 99 (5): 2642–7. doi:10.1073/pnas.261715899. PMC 122401. PMID 11867769.
  34. Ma ZQ, Liu Z, Ngan ES, Tsai SY (Dec 2001). "Cdc25B Functions as a Novel Coactivator for the Steroid Receptors". Mol. Cell. Biol. 21 (23): 8056–67. doi:10.1128/MCB.21.23.8056-8067.2001. PMC 99972. PMID 11689696.
  35. Boruk M, Savory JG, Haché RJ (Nov 1998). "AF-2-dependent potentiation of CCAAT enhancer binding protein beta-mediated transcriptional activation by glucocorticoid receptor". Mol. Endocrinol. 12 (11): 1749–63. doi:10.1210/mend.12.11.0191. PMID 9817600.
  36. Stein B, Yang MX (Sep 1995). "Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta". Mol. Cell. Biol. 15 (9): 4971–9. PMC 230744. PMID 7651415.
  37. Aiyar SE, Sun JL, Blair AL, Moskaluk CA, Lu YZ, Ye QN, Yamaguchi Y, Mukherjee A, Ren DM, Handa H, Li R (Sep 2004). "Attenuation of estrogen receptor α-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor". Genes Dev. 18 (17): 2134–46. doi:10.1101/gad.1214104. PMC 515291. PMID 15342491.
  38. Métivier R, Gay FA, Hübner MR, Flouriot G, Salbert G, Gannon F, Kah O, Pakdel F (Jul 2002). "Formation of an hERα–COUP-TFI complex enhances hERα AF-1 through Ser118 phosphorylation by MAPK". EMBO J. 21 (13): 3443–53. doi:10.1093/emboj/cdf344. PMC 126093. PMID 12093745.
  39. 39.0 39.1 Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM (Jan 2001). "Analysis of the Steroid Receptor Coactivator 1 (SRC1)-CREB Binding Protein Interaction Interface and Its Importance for the Function of SRC1". Mol. Cell. Biol. 21 (1): 39–50. doi:10.1128/MCB.21.1.39-50.2001. PMC 86566. PMID 11113179.
  40. Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ (Feb 1997). "CDK-independent activation of estrogen receptor by cyclin D1". Cell. 88 (3): 405–15. doi:10.1016/S0092-8674(00)81879-6. PMID 9039267.
  41. 41.0 41.1 41.2 41.3 41.4 41.5 Watanabe M, Yanagisawa J, Kitagawa H, Takeyama K, Ogawa S, Arao Y, Suzawa M, Kobayashi Y, Yano T, Yoshikawa H, Masuhiro Y, Kato S (Mar 2001). "A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor α coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA". EMBO J. 20 (6): 1341–52. doi:10.1093/emboj/20.6.1341. PMC 145523. PMID 11250900.
  42. Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S (Aug 1999). "Purification and Identification of p68 RNA Helicase Acting as a Transcriptional Coactivator Specific for the Activation Function 1 of Human Estrogen Receptor α". Mol. Cell. Biol. 19 (8): 5363–72. PMC 84379. PMID 10409727.
  43. Bu H, Kashireddy P, Chang J, Zhu YT, Zhang Z, Zheng W, Rao SM, Zhu YJ (Apr 2004). "ERBP, a novel estrogen receptor binding protein enhancing the activity of estrogen receptor". Biochem. Biophys. Res. Commun. 317 (1): 54–9. doi:10.1016/j.bbrc.2004.02.179. ISSN 0006-291X. PMID 15047147.
  44. Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, Miard S, Auwerx J (Dec 2002). "The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation". Dev. Cell. 3 (6): 903–10. doi:10.1016/S1534-5807(02)00360-X. PMID 12479814.
  45. Ogawa S, Inoue S, Watanabe T, Hiroi H, Orimo A, Hosoi T, Ouchi Y, Muramatsu M (Feb 1998). "The complete primary structure of human estrogen receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in vitro". Biochem. Biophys. Res. Commun. 243 (1): 122–6. doi:10.1006/bbrc.1997.7893. ISSN 0006-291X. PMID 9473491.
  46. Poelzl G, Kasai Y, Mochizuki N, Shaul PW, Brown M, Mendelsohn ME (Mar 2000). "Specific association of estrogen receptor β with the cell cycle spindle assembly checkpoint protein, MAD2". Proc. Natl. Acad. Sci. U.S.A. 97 (6): 2836–9. doi:10.1073/pnas.050580997. PMC 16016. PMID 10706629.
  47. Schuur ER, Loktev AV, Sharma M, Sun Z, Roth RA, Weigel RJ (Sep 2001). "Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family". J. Biol. Chem. 276 (36): 33554–60. doi:10.1074/jbc.M105555200. PMID 11435445.
  48. Deschênes J, Bourdeau V, White JH, Mader S (June 2007). "Regulation of GREB1 transcription by estrogen receptor alpha through a multipartite enhancer spread over 20 kb of upstream flanking sequences". J. Biol. Chem. 282 (24): 17335–17339. doi:10.1074/jbc.C700030200. PMID 17463000.
  49. Chen D, Riedl T, Washbrook E, Pace PE, Coombes RC, Egly JM, Ali S (Jul 2000). "Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7". Mol. Cell. 6 (1): 127–37. doi:10.1016/S1097-2765(00)00014-9. PMID 10949034.
  50. Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF (Dec 1996). "A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor". Cell Stress Chaperones. 1 (4): 237–50. doi:10.1379/1466-1268(1996)001<0237:APOMCI>2.3.CO;2. PMC 376461. PMID 9222609.
  51. Lee MO, Kim EO, Kwon HJ, Kim YM, Kang HJ, Kang H, Lee JE (Feb 2002). "Radicicol represses the transcriptional function of the estrogen receptor by suppressing the stabilization of the receptor by heat shock protein 90". Mol. Cell. Endocrinol. 188 (1–2): 47–54. doi:10.1016/S0303-7207(01)00753-5. PMID 11911945.
  52. Gay F, Anglade I, Gong Z, Salbert G (Oct 2000). "The LIM/homeodomain protein islet-1 modulates estrogen receptor functions". Mol. Endocrinol. 14 (10): 1627–48. doi:10.1210/me.14.10.1627. PMID 11043578.
  53. Chan SW, Hong W (Jul 2001). "Retinoblastoma-binding protein 2 (Rbp2) potentiates nuclear hormone receptor-mediated transcription". J. Biol. Chem. 276 (30): 28402–12. doi:10.1074/jbc.M100313200. PMID 11358960.
  54. Abbondanza C, Rossi V, Roscigno A, Gallo L, Belsito A, Piluso G, Medici N, Nigro V, Molinari AM, Moncharmont B, Puca GA (Jun 1998). "Interaction of Vault Particles with Estrogen Receptor in the MCF-7 Breast Cancer Cell". J. Cell Biol. 141 (6): 1301–10. doi:10.1083/jcb.141.6.1301. PMC 2132791. PMID 9628887.
  55. 55.0 55.1 55.2 Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (Jun 2003). "The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome". Cell. 113 (7): 905–17. doi:10.1016/S0092-8674(03)00436-7. PMID 12837248.
  56. 56.0 56.1 Teo AK, Oh HK, Ali RB, Li BF (Oct 2001). "The Modified Human DNA Repair Enzyme O6-Methylguanine-DNA Methyltransferase Is a Negative Regulator of Estrogen Receptor-Mediated Transcription upon Alkylation DNA Damage". Mol. Cell. Biol. 21 (20): 7105–14. doi:10.1128/MCB.21.20.7105-7114.2001. PMC 99886. PMID 11564893.
  57. Talukder AH, Mishra SK, Mandal M, Balasenthil S, Mehta S, Sahin AA, Barnes CJ, Kumar R (Mar 2003). "MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions". J. Biol. Chem. 278 (13): 11676–85. doi:10.1074/jbc.M209570200. PMID 12527756.
  58. Kumar R, Wang RA, Mazumdar A, Talukder AH, Mandal M, Yang Z, Bagheri-Yarmand R, Sahin A, Hortobagyi G, Adam L, Barnes CJ, Vadlamudi RK (Aug 2002). "A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm". Nature. 418 (6898): 654–7. doi:10.1038/nature00889. PMID 12167865.
  59. Mazumdar A, Wang RA, Mishra SK, Adam L, Bagheri-Yarmand R, Mandal M, Vadlamudi RK, Kumar R (Jan 2001). "Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor". Nat. Cell Biol. 3 (1): 30–7. doi:10.1038/35050532. PMID 11146623.
  60. Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW (Nov 1999). "A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo". J. Biol. Chem. 274 (48): 34283–93. doi:10.1074/jbc.274.48.34283. PMID 10567404.
  61. Ko L, Cardona GR, Iwasaki T, Bramlett KS, Burris TP, Chin WW (Jan 2002). "Ser-884 adjacent to the LXXLL motif of coactivator TRBP defines selectivity for ERs and TRs". Mol. Endocrinol. 16 (1): 128–40. doi:10.1210/mend.16.1.0755. PMID 11773444.
  62. 62.0 62.1 DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M (Oct 2000). "BRG-1 Is Recruited to Estrogen-Responsive Promoters and Cooperates with Factors Involved in Histone Acetylation". Mol. Cell. Biol. 20 (20): 7541–9. doi:10.1128/MCB.20.20.7541-7549.2000. PMC 86306. PMID 11003650.
  63. Kalkhoven E, Valentine JE, Heery DM, Parker MG (Jan 1998). "Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor". EMBO J. 17 (1): 232–43. doi:10.1093/emboj/17.1.232. PMC 1170374. PMID 9427757.
  64. Wärnmark A, Treuter E, Gustafsson JA, Hubbard RE, Brzozowski AM, Pike AC (Jun 2002). "Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor alpha". J. Biol. Chem. 277 (24): 21862–8. doi:10.1074/jbc.M200764200. PMID 11937504.
  65. He B, Wilson EM (Mar 2003). "Electrostatic Modulation in Steroid Receptor Recruitment of LXXLL and FXXLF Motifs". Mol. Cell. Biol. 23 (6): 2135–50. doi:10.1128/MCB.23.6.2135-2150.2003. PMC 149467. PMID 12612084.
  66. Fenne IS, Hoang T, Hauglid M, Sagen JV, Lien EA, Mellgren G (Sep 2008). "Recruitment of coactivator glucocorticoid receptor interacting protein 1 to an estrogen receptor transcription complex is regulated by the 3',5'-cyclic adenosine 5'-monophosphate-dependent protein kinase". Endocrinology. 149 (9): 4336–45. doi:10.1210/en.2008-0037. PMID 18499756.
  67. Wong CW, Komm B, Cheskis BJ (Jun 2001). "Structure-function evaluation of ER alpha and beta interplay with SRC family coactivators. ER selective ligands". Biochemistry. 40 (23): 6756–65. doi:10.1021/bi010379h. PMID 11389589.
  68. Tikkanen MK, Carter DJ, Harris AM, Le HM, Azorsa DO, Meltzer PS, Murdoch FE (Nov 2000). "Endogenously expressed estrogen receptor and coactivator AIB1 interact in MCF-7 human breast cancer cells". Proc. Natl. Acad. Sci. U.S.A. 97 (23): 12536–40. doi:10.1073/pnas.220427297. PMC 18799. PMID 11050174.
  69. Cavaillès V, Dauvois S, L'Horset F, Lopez G, Hoare S, Kushner PJ, Parker MG (Aug 1995). "Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor". EMBO J. 14 (15): 3741–51. PMC 394449. PMID 7641693.
  70. 70.0 70.1 Thénot S, Henriquet C, Rochefort H, Cavaillès V (May 1997). "Differential interaction of nuclear receptors with the putative human transcriptional coactivator hTIF1". J. Biol. Chem. 272 (18): 12062–8. doi:10.1074/jbc.272.18.12062. PMID 9115274.
  71. L'Horset F, Dauvois S, Heery DM, Cavaillès V, Parker MG (Nov 1996). "RIP-140 interacts with multiple nuclear receptors by means of two distinct sites". Mol. Cell. Biol. 16 (11): 6029–36. PMC 231605. PMID 8887632.
  72. 72.0 72.1 Johnsen SA, Güngör C, Prenzel T, Riethdorf S, Riethdorf L, Taniguchi-Ishigaki N, Rau T, Tursun B, Furlow JD, Sauter G, Scheffner M, Pantel K, Gannon F, Bach I (Jan 2009). "Regulation of Estrogen-Dependent Transcription by the LIM Cofactors CLIM and RLIM in Breast Cancer". Cancer Res. 69 (1): 128–36. doi:10.1158/0008-5472.CAN-08-1630. PMC 2713826. PMID 19117995.
  73. 73.0 73.1 Budhram-Mahadeo V, Parker M, Latchman DS (Feb 1998). "POU Transcription Factors Brn-3a and Brn-3b Interact with the Estrogen Receptor and Differentially Regulate Transcriptional Activity via an Estrogen Response Element". Mol. Cell. Biol. 18 (2): 1029–41. doi:10.1128/mcb.18.2.1029. PMC 108815. PMID 9448000.
  74. Abbondanza C, Medici N, Nigro V, Rossi V, Gallo L, Piluso G, Belsito A, Roscigno A, Bontempo P, Puca AA, Molinari AM, Moncharmont B, Puca GA (Mar 2000). "The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3130–5. doi:10.1073/pnas.050015697. PMC 16204. PMID 10706618.
  75. Qi C, Chang J, Zhu Y, Yeldandi AV, Rao SM, Zhu YJ (Aug 2002). "Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha". J. Biol. Chem. 277 (32): 28624–30. doi:10.1074/jbc.M201053200. PMID 12039952.
  76. Jung DJ, Na SY, Na DS, Lee JW (Jan 2002). "Molecular cloning and characterization of CAPER, a novel coactivator of activating protein-1 and estrogen receptors". J. Biol. Chem. 277 (2): 1229–34. doi:10.1074/jbc.M110417200. PMID 11704680.
  77. Townson SM, Kang K, Lee AV, Oesterreich S (Jun 2004). "Structure-function analysis of the estrogen receptor alpha corepressor scaffold attachment factor-B1: identification of a potent transcriptional repression domain". J. Biol. Chem. 279 (25): 26074–81. doi:10.1074/jbc.M313726200. PMID 15066997.
  78. Oesterreich S, Zhang Q, Hopp T, Fuqua SA, Michaelis M, Zhao HH, Davie JR, Osborne CK, Lee AV (Mar 2000). "Tamoxifen-bound estrogen receptor (ER) strongly interacts with the nuclear matrix protein HET/SAF-B, a novel inhibitor of ER-mediated transactivation". Mol. Endocrinol. 14 (3): 369–81. doi:10.1210/mend.14.3.0432. PMID 10707955.
  79. Townson SM, Dobrzycka KM, Lee AV, Air M, Deng W, Kang K, Jiang S, Kioka N, Michaelis K, Oesterreich S (May 2003). "SAFB2, a new scaffold attachment factor homolog and estrogen receptor corepressor". J. Biol. Chem. 278 (22): 20059–68. doi:10.1074/jbc.M212988200. PMID 12660241.
  80. Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, Santen RJ (Jan 2002). "Linkage of rapid estrogen action to MAPK activation by ERalpha-Shc association and Shc pathway activation". Mol. Endocrinol. 16 (1): 116–27. doi:10.1210/me.16.1.116. PMID 11773443.
  81. Seol W, Hanstein B, Brown M, Moore DD (Oct 1998). "Inhibition of estrogen receptor action by the orphan receptor SHP (short heterodimer partner)". Mol. Endocrinol. 12 (10): 1551–7. doi:10.1210/me.12.10.1551. PMID 9773978.
  82. Klinge CM, Jernigan SC, Risinger KE (Mar 2002). "The agonist activity of tamoxifen is inhibited by the short heterodimer partner orphan nuclear receptor in human endometrial cancer cells". Endocrinology. 143 (3): 853–67. doi:10.1210/en.143.3.853. PMID 11861507.
  83. Ichinose H, Garnier JM, Chambon P, Losson R (Mar 1997). "Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2". Gene. 188 (1): 95–100. doi:10.1016/S0378-1119(96)00785-8. PMID 9099865.
  84. Belandia B, Orford RL, Hurst HC, Parker MG (Aug 2002). "Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes". EMBO J. 21 (15): 4094–103. doi:10.1093/emboj/cdf412. PMC 126156. PMID 12145209.
  85. Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M, Barone MV, Ametrano D, Zannini MS, Abbondanza C, Auricchio F (Oct 2000). "Steroid-induced androgen receptor–oestradiol receptor β–Src complex triggers prostate cancer cell proliferation". EMBO J. 19 (20): 5406–17. doi:10.1093/emboj/19.20.5406. PMC 314017. PMID 11032808.
  86. Kim HJ, Yi JY, Sung HS, Moore DD, Jhun BH, Lee YC, Lee JW (Sep 1999). "Activating Signal Cointegrator 1, a Novel Transcription Coactivator of Nuclear Receptors, and Its Cytosolic Localization under Conditions of Serum Deprivation". Mol. Cell. Biol. 19 (9): 6323–32. doi:10.1128/mcb.19.9.6323. PMC 84603. PMID 10454579.
  87. Slentz-Kesler K, Moore JT, Lombard M, Zhang J, Hollingsworth R, Weiner MP (Oct 2000). "Identification of the human Mnk2 gene (MKNK2) through protein interaction with estrogen receptor beta". Genomics. 69 (1): 63–71. doi:10.1006/geno.2000.6299. PMID 11013076.
  88. Hu YC, Shyr CR, Che W, Mu XM, Kim E, Chang C (Sep 2002). "Suppression of estrogen receptor-mediated transcription and cell growth by interaction with TR2 orphan receptor". J. Biol. Chem. 277 (37): 33571–9. doi:10.1074/jbc.M203531200. PMID 12093804.
  89. Shyr CR, Hu YC, Kim E, Chang C (Apr 2002). "Modulation of estrogen receptor-mediated transactivation by orphan receptor TR4 in MCF-7 cells". J. Biol. Chem. 277 (17): 14622–8. doi:10.1074/jbc.M110051200. PMID 11844790.
  90. Chen D, Lucey MJ, Phoenix F, Lopez-Garcia J, Hart SM, Losson R, Buluwela L, Coombes RC, Chambon P, Schär P, Ali S (Oct 2003). "T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha". J. Biol. Chem. 278 (40): 38586–92. doi:10.1074/jbc.M304286200. PMID 12874288.
  91. Thénot S, Bonnet S, Boulahtouf A, Margeat E, Royer CA, Borgna JL, Cavaillès V (Dec 1999). "Effect of ligand and DNA binding on the interaction between human transcription intermediary factor 1alpha and estrogen receptors". Mol. Endocrinol. 13 (12): 2137–50. doi:10.1210/me.13.12.2137. PMID 10598587.
  92. Ding L, Yan J, Zhu J, Zhong H, Lu Q, Wang Z, Huang C, Ye Q (Sep 2003). "Ligand-independent activation of estrogen receptor α by XBP-1". Nucleic Acids Res. 31 (18): 5266–74. doi:10.1093/nar/gkg731. PMC 203316. PMID 12954762.

Further reading

  • McDonnell DP, Norris JD (2002). "Connections and regulation of the human estrogen receptor". Science. 296 (5573): 1642–4. doi:10.1126/science.1071884. PMID 12040178.
  • Simoncini T, Fornari L, Mannella P, Varone G, Caruso A, Liao JK, Genazzani AR (2003). "Novel non-transcriptional mechanisms for estrogen receptor signaling in the cardiovascular system. Interaction of estrogen receptor alpha with phosphatidylinositol 3-OH kinase". Steroids. 67 (12): 935–9. doi:10.1016/S0039-128X(02)00040-5. PMID 12398989.
  • Lannigan DA (2003). "Estrogen receptor phosphorylation". Steroids. 68 (1): 1–9. doi:10.1016/S0039-128X(02)00110-1. PMID 12475718.
  • Herrington DM (2003). "Role of estrogen receptor-alpha in pharmacogenetics of estrogen action". Curr. Opin. Lipidol. 14 (2): 145–50. doi:10.1097/00041433-200304000-00005. PMID 12642782.
  • Tanaka Y, Sasaki M, Kaneuchi M, Fujimoto S, Dahiya R (2004). "Estrogen receptor alpha polymorphisms and renal cell carcinoma--a possible risk". Mol. Cell. Endocrinol. 202 (1–2): 109–16. doi:10.1016/S0303-7207(03)00071-6. PMID 12770739.
  • Ali S, Coombes RC (2004). "Estrogen receptor alpha in human breast cancer: occurrence and significance". Journal of Mammary Gland Biology and Neoplasia. 5 (3): 271–81. doi:10.1023/A:1009594727358. PMID 14973389.
  • Olsson H (2004). "Estrogen receptor content in malignant breast tumors in men--a review". Journal of Mammary Gland Biology and Neoplasia. 5 (3): 283–7. doi:10.1023/A:1009546811429. PMID 14973390.
  • Surmacz E, Bartucci M (2005). "Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer". J. Exp. Clin. Cancer Res. 23 (3): 385–94. PMID 15595626.
  • Evinger AJ, Levin ER (2005). "Requirements for estrogen receptor alpha membrane localization and function". Steroids. 70 (5–7): 361–3. doi:10.1016/j.steroids.2005.02.015. PMID 15862818.
  • Wang CL, Tang XY, Chen WQ, Su YX, Zhang CX, Chen YM (2007). "Association of estrogen receptor alpha gene polymorphisms with bone mineral density in Chinese women: a meta-analysis". Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 18 (3): 295–305. doi:10.1007/s00198-006-0239-2. PMID 17089081.
  • Keaveney M, Klug J, Gannon F (1992). "Sequence analysis of the 5' flanking region of the human estrogen receptor gene". DNA Seq. 2 (6): 347–58. doi:10.3109/10425179209020816. PMID 1476547.
  • Piva R, Gambari R, Zorzato F, Kumar L, del Senno L (1992). "Analysis of upstream sequences of the human estrogen receptor gene". Biochem. Biophys. Res. Commun. 183 (3): 996–1002. doi:10.1016/S0006-291X(05)80289-X. PMID 1567414.
  • Reese JC, Katzenellenbogen BS (1992). "Characterization of a temperature-sensitive mutation in the hormone binding domain of the human estrogen receptor. Studies in cell extracts and intact cells and their implications for hormone-dependent transcriptional activation". J. Biol. Chem. 267 (14): 9868–73. PMID 1577818.
  • Dotzlaw H, Alkhalaf M, Murphy LC (1992). "Characterization of estrogen receptor variant mRNAs from human breast cancers". Mol. Endocrinol. 6 (5): 773–85. doi:10.1210/me.6.5.773. PMID 1603086.
  • Keaveney M, Klug J, Dawson MT, Nestor PV, Neilan JG, Forde RC, Gannon F (1991). "Evidence for a previously unidentified upstream exon in the human oestrogen receptor gene". J. Mol. Endocrinol. 6 (1): 111–5. doi:10.1677/jme.0.0060111. PMID 2015052.
  • Reese JC, Katzenellenbogen BS (1991). "Mutagenesis of cysteines in the hormone binding domain of the human estrogen receptor. Alterations in binding and transcriptional activation by covalently and reversibly attaching ligands". J. Biol. Chem. 266 (17): 10880–7. PMID 2040605.
  • Schwabe JW, Neuhaus D, Rhodes D (1991). "Solution structure of the DNA-binding domain of the oestrogen receptor". Nature. 348 (6300): 458–61. doi:10.1038/348458a0. PMID 2247153.
  • Tora L, Mullick A, Metzger D, Ponglikitmongkol M, Park I, Chambon P (1989). "The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties". EMBO J. 8 (7): 1981–6. PMC 401066. PMID 2792078.
  • Ponglikitmongkol M, Green S, Chambon P (1989). "Genomic organization of the human oestrogen receptor gene". EMBO J. 7 (11): 3385–8. PMC 454836. PMID 3145193.
  • Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986). "Sequence and expression of human estrogen receptor complementary DNA". Science. 231 (4742): 1150–4. doi:10.1126/science.3753802. PMID 3753802.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.